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Abstract

More and more people rely on smartphones to manage their personal data. For

many, it has become a constant companion for a variety of tasks, such as making

calls, surfing the web, or using location-based services. Common usage always

leaves traces in the main memory which could turn out to become digital evidence

that can be valuable for criminal investigations. Recovering such data artifacts

out of volatile memory from mobile devices is known as live memory forensics.

Until now, there is no solution for performing live memory forensics on the An-

droid platform by a comprehensive bottom-up approach. The approach presented

in this thesis acquires the main memory from target devices to conduct further

analysis. To gain knowledge about the layout of data in physical memory, the

three central aspects of the Android platform are analyzed: The Linux kernel,

the Dalvik Virtual Machine and a chosen set of applications. To create a thor-

ough software solution, the work extends Volatility, an advanced memory foren-

sics framework. The result is a set of plugins to read data such as user names,

passwords, chat messages, and email. The thesis also identifies a guideline for ad-

ditional application analysis and the corresponding plugin creation process. The

overall outcome of this thesis a software stack that fits into the toolkit of every

digital forensic investigator.
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1. Introduction and Motivation

Smartphones are on the rise (ITProPortal, 2012). Nearly every second adult in

the US owns at least one device. For many people, a smartphone has become

a constant companion not just because of its traditional phone capabilities, but

rather because of its smart features. Those include managing schedules with a

calendar application, surfing the web, or using location-based services. By all

means, many smartphones are used for organizing personal data. It is not a

surprise that among the people who are using smartphones are also those people

pursuing criminal activities. For investigators, data stored on smartphones is

likely to contain evidence crucial for resolving a criminal case.

This evidence can either be stored in persistent memory or as live data in the

system’s main memory. The latter is typically lost when a device runs out of

battery power or is shut off, making it harder to recover. Hence, a forensic

investigator needs the abilities and proper means to recover such data from a

mobile smartphone device. This field of forensic investigation is also known as

live memory forensics.

As of now, the majority of smartphones are powered by the Android operating

system. It reached a market share of 75% in the third quarter of 2012 (Interna-

tional Data Corporation, 2012). Until now, no research project has performed

live memory forensics on the Android platform by a comprehensive bottom-up

approach. This gap is filled by this thesis. The thesis is presenting an approach

which creates a thorough software stack for forensic analysis of the Android op-

erating system.

We start in Chapter 2 with providing the background about the three major

areas this thesis is built upon. This includes a classification of the term live

memory forensics, an overview about the Android platform, and an introduction

of the popular memory forensics framework Volatility. After considering related

research projects and an alternative live memory forensic approach, we define the

goals of this thesis and the further approach of the project.

1



1. Introduction and Motivation 2

The approach is split into two main tasks: Memory Acquisition (Chapter 3),

and Memory Analysis (Chapters 4, 5, and 6).

In Chapter 3, we depict the memory acquisition process. This is done by defining

the prerequisites, including the preparation of the target smartphones and the

setup of a development environment. This leads to the discussion of a concrete

acquisition method and concludes with the overall acquisition process.

After memory acquisition, we start looking at memory analysis in Chapter 4.

For this purpose, we give an introduction into the Volatility framework and how

to make it work together with the acquired memory images. As Android is a

Linux-based operating system, we discuss the existing support for Linux kernels

by the framework. This enables us to read operating system data structures.

Chapter 5 focuses on the central software component in Android, the Dalvik

Virtual Machine. We look at its internals and what data it actually contains.

For this purpose, we discuss chosen aspects of the Java programming language

and its implementation within Android. The major part of the chapter introduces

Dalvik Virtual Machine support for Volatility by showing the creation process of

corresponding plugins. With these plugins, forensic investigators can read virtual

machine specific data and are empowered to gain knowledge about application

internals. The latter is the foundation for the following chapter.

We complete the software stack for Android memory forensics in Chapter 6 by

showing how to analyze specific applications. For this purpose, we present plugins

to read user data such as account names, passwords, and chat messages. This

also illustrates how the formerly created software components can assist a forensic

investigator in creating additional application plugins.

The source code written for this thesis has been submitted upstream to the

Volatility project. This is presented in Chapter 7. We also discuss possible

future work and remaining challenges. The chapter concludes by comparing the

initial goals to their actual outcome.



2. Background and Related Work

The first chapter provides an introduction to the major areas this research project

is about. The first area is forensics, for which we will outline the commonali-

ties and differences of the terms digtial forensics, mobile device forensics and live

forensics. The second topic is Android, an operating system for mobile devices.

We will briefly describe its origins, its structure and components, and the rele-

vance for this project. The third area is Volatility, an advanced memory forensics

framework and the building block the work performed in this thesis is based on.

After classification of the major areas, related research projects and papers are

put into context. In the course of that, an alternative method doing forensic

investigation of an Android device will be outlined briefly.

At the end of this chapter, the goals of this thesis are defined. This leads us to

a description of the further strategy and development process.

2.1. Digital and Mobile Device Forensics

Forensic science is a broad subject. Even Wikipedia lists more than 30 subdivi-

sions (Wikipedia, 2012f). Examples are forensic DNA analysis, forensic linguistics

or forensic psychology. In general, Houck and Siegel describe forensic sciences as

follows:

“Forensic science describes the science of associating people, places

and things involved in criminal activities; these specific disciplines as-

sist in investigating and adjudicating criminal and civil cases.” (Houck

& Siegel, 2009, p. 4)

Amongst the different branches is the discipline of digital forensics. This spe-

cific field is about forensic investigations for digital devices, or the data found

within. From a high-level perspective, digital forensic sciences can be divided

3



2. Background and Related Work 4

into five separate tasks: Data recovery, data analysis, extraction of evidence and

the preservation and presentation of that evidence (Carrier, 2003). This thesis

includes three of these individual tasks: Recovery of data from a mobile device,

in this case a smartphone, analysis of the same, and extraction of evidence. How-

ever, the latter is only touched by guessing what could be of interest from a legal

perspective and does not go into detail.

Because data is also recovered from smartphones, the specific forensic branch

targeted in this thesis is also knows as mobile device forensics. It evolved out of

the traditional computer forensic science, because small embedded devices have

other constrains and might require different tools for forensic data recovery (Punja

& Mislan, 2008). However, due to the fact that storage, memory, and processor

power of smartphones and traditional computers are converging, more and more

similarities evolve. Thus, a differentiation becomes more and more difficult.

One major goal for digital forensic investigators is to recover data stored on

devices such as hard disks, or flash storage. Those technologies have a common

characteristic, namely being persistent storage devices. That means that the data

stored on them is not lost when the power is removed from the system. The data

is stored in a non-volatile fashion, for instance on platters.

On the contrary, this thesis deals with live memory acquisition and analysis.

Instead of storage devices like hard disks or flash memory, volatile data which

can be found in a system’s main memory (RAM) is of major interest. Forensic

investigations targeting this kind of data is also known as live forensics (Adelstein,

2006), or RAM forensics (Urrea, 2006).

In this context, live tries to express that the focus lies on a system’s current state.

A so called snapshot at a specific point in time. Adelstein (2006, p. 64) compares

this to a photograph of a specific scene of a crime. To get such a system’s state,

instead of an image of a persistent storage device, a copy of the main memory has

to be acquired. This need to be performed while the system is live, fully func-

tional and operational. If that is not the case, possibly because the main power

has been removed, the volatile data is lost. The main memory contains the whole

state of an operating system, including running and historical processes, open net-

work connections, management data, or personal data. Having memory images

available for further processing, higher level information, usually represented by
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C structures (in-kernel information) or Java objects (Android applications) can

be analyzed. Because of the fact that the image of volatile memory is usually

stored on non-volatile storage by a forensic investigator, there is no immediate

risk of loosing the acquired evidence. Therefore, forensic investigations can be

postponed until a controlled environment is available.

2.2. The Android Platform

Android originates from the equally named Android, Inc. (Wikipedia, 2012a).

The company founded Android and was later purchased by Google in 2005. In

2007, it was presented to the public by the Open Handset Alliance, consisting

of companies like HTC, Samsung, Qualcomm, Texas Instruments, and last but

not least, Google. In October 2008, the first publicly available phone running

the Android platform was released. Since then, various hardware companies,

including some of those just named, created and sold countless smart phones and

tablet devices based on Android.

Android is a software stack consisting of a Linux kernel, a middleware layer, a

virtual machine called Dalvik Virtual Maschine which is able to run applications

written in Java, and some core applications like an internet browser or a mes-

saging application. Third party applications which make use of the available

application framework can be created, too.

At the bottom of the Android software stack, Android is powered by a Linux

kernel. All higher layers rely on the kernel’s core services such as security, mem-

ory management, process management, network stack, and driver model (Google

Inc., 2012). Although it is based on the mainline kernel from kernel.org1,

it is extended by a set of patches. The changes made to the standard Linux

kernel include random bug fixes, kernel infrastructure improvements, new hard-

ware support, and standalone kernel enhancements for higher layer elements such

as applications (Brähler, 2010). Many vendors selling Android powered devices

modify the kernel even further.

However, none of the kernel changes are of immediate relevance for both memory

acquisition and memory analysis performed in this project. There is just one

1http://www.kernel.org

kernel.org
http://www.kernel.org
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feature added to the kernel and considered indirectly related to this project. It is

called the Low Memory Killer, as opposed to the Out of Memory Killer in stan-

dard Linux kernels, and added on top of it, not interfering with its functionality

(Brähler, 2010). As soon as a system runs out of memory, the Out of Memory

Killer sacrifices and kills one or more processes to free up some memory. In con-

trast to that, the Low Memory Killer kills processes belonging to an application

before the system observes negative effects. It does that based on a priority which

is attached to an application and its current state. The different states together

with their priority are discussed in Section 6.1.3.

The central software component of Android is the Dalvik Virtual Machine2, ab-

breviated as DalvikVM in the following. On Android, every application runs in

its own DalvikVM. It is a similar concept as the Java Virtual Machine, with a few,

but significant differences. For example, the byte code created from the source

files are compiled into .dex-files instead of .class-files. Those are more optimized

for the target devices like smart phones or tablet computers. Those .dex-files are

created by a tool called dx which compiles and optimizes multiple Java .class-files

into a single file. Together with a configuration file (AndroidManifest.xml), and

non-source-code files like images and layout descriptions, the .dex-file is packaged

into a Android Package file (abbrev. APK) (Shabtai et al., 2009). Those are

the Android equivalents to .jar-files and can be installed on the target device.

Basically, an .apk-file is a ZIP-compatible file representing a single application.

On top of the stack are applications. They are written in Java and provide

the actual user functionality. Examples include applications for text messaging,

internet browsers, calendars, or games.

For the purpose of development, debugging, testing, and system profiling, the

Android Software Development Kit3 (abbrev. Android SDK) is provided. Besides

the API libraries to build Java applications, it includes developer tools such as the

Android Debug Bridge, also known as adb, or the Dalvik Debug Monitor Server,

abbreviated as DDMS. We will make use of these tools at a later point in this

thesis.

Android’s source code is released under an open source license via the Android

2http://code.google.com/p/dalvik/
3http://developer.android.com/sdk/index.html

http://code.google.com/p/dalvik/
http://developer.android.com/sdk/index.html
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Open Source Project (AOSP)4. This includes the kernel source, and any other

higher level components. Some phone vendors even provide their own modified

kernel source code for download. Being able to read the source code of the

Android and DalvikVM implementation is essential for this research project,

because it enables us gain deep knowledge about how data structures will be laid

out in memory.

2.3. The Volatility Framework

After memory acquisition (cf. Chapter 3) has been successfully performed and

thus, a file representing the physical memory of a system is available, we intend

to extract data artifacts out of it. Without further ado, we would only be able to

extract ASCII strings laid out in a contiguous fashion. However, this approach is

limited, because we intend to parse visual elements and try to extract whole data

objects from the Android system. Furthermore, we intend to create a solution

that can be followed up upon. It should be generic, and thus, can be used by

other developers, researchers and forensic investigators. For that purpose, will

make heavy use of a popular forensic investigation framework called Volatility5.

In fact, our work will be based on its infrastructure.

Volatility is a “Volatile memory artifact extraction utility framework” (Volatilesys-

tems, 2012). It is completely open source, released under the GNU General Public

License6 and written in Python. This makes it possible to base the work per-

formed in this research project on its source code and to publish the results. At

the time of writing, Volatility contains official support for Microsoft Windows,

Linux and Mac OS. Starting from version 2.3, it will also contain support for the

ARM architecture, and thus Android. In this project, we will use a preliminary,

but already functional, ARM support. Given a memory image, Volatility can ex-

tract running processes, open network sockets, memory maps for each process, or

kernel modules. Additional information about the functionality of each module

can be found on the project homepage1. Volatility has a public API and comes

with an extendable plugin system which makes it easy to write new code, sup-

4http://source.android.com/
5https://www.volatilesystems.com/default/volatility
6http://de.wikipedia.org/wiki/GNU_General_Public_License

http://source.android.com/
https://www.volatilesystems.com/default/volatility
http://de.wikipedia.org/wiki/GNU_General_Public_License
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port more operating systems, and add support for extracting additional artifacts.

This makes it the perfect choice for basing our work upon it.

However, another framework for supporting Linux memory forensics has been

considered shortly. It is called Volatilitux7 and was supposed to provide Linux

memory forensics at a time Volatility lacked support for it. However, as of now, it

has only limited capabilities such as enumeration of running processes. Further-

more, the last code change has been made in late 20118, so no active development

community exists and, thus, it is unlikely that more functionality will be added

soon. Because of the fact that no real plugin system is available, it makes it rather

unsuitable for further extensions which are required for this research project.

2.4. Related Work

The research areas corresponding to the topic handled in this thesis can be sep-

arated into three different fields, with increasing specialization: Live Forensics,

Linux Live Forensics, and Android Live Memory Forensics.

Live Forensics have been discussed in multiple papers. Hay et al. (2009) looks

at the topic from a higher level, drawing a concrete distinction between static

and live analysis. He also outlines the different possibilities for live analysis, also

considering, but not solely, memory analysis. However, he does not provide a

operating system specific solution. The same applies to Adelstein (2006) and his

paper “Diagnosing Your System without Killing it First”.

Linux Live Forensics has been a research topic for several years. Yen et al.

(2009) and Urrea (2006) focus on that area. The latter describe the underlying

concepts of a concrete Linux distribution by outlining kernel structures relevant

for memory management which can be used to retrieve corresponding evidence.

He uses a tool called dd to read the physical memory from a file called /proc/mem.

However, this way of physical memory retrieval is considered flawed by Sylve et al.

(2012), because it alters the evidence in a too intrusive way.

Instead, Sylve et al. (2012) developed their own solution capturing memory from

Linux-based, so also Android-based, systems. They also illustrate how to acquire

7http://code.google.com/p/volatilitux/
8http://code.google.com/p/volatilitux/source/browse/

http://code.google.com/p/volatilitux/
http://code.google.com/p/volatilitux/source/browse/
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some basic kernel data with the help of Volatility. Their paper “Acquisition and

analysis of volatile memory from android devices” targets the field of Android

Live Memory Forensics and serves as a base for this thesis. In the same area,

Thing et al. (2010) describe a method of analyzing memory images in regard to

communication. They developed a tool called memgrab to capture the memory

regions belonging to a specific process. The memory regions can then be searched

for known patterns corresponding to chat messages. However, they do not intend

to solve the problem for acquiring the whole physical memory.

Leppert (2012) showed a way for Android live analysis with just looking at the

heap of specific, running applications. Due to its actuality, his approach is out-

lined next.

2.5. Alternative Approach: Heap Dump Analysis

The approach performed by Leppert (2012) for Android application forensics by

just investigating the application’s heap can be split into two basic tasks:

1. Acquisition of the heap dump. This can be done with a tool called DDMS

which is provided by the Android SDK. The resulting file has a special

format called a heap profile (file extension: .hprof).

2. Analysis of the heap dump with a memory analyzer such as Eclipse MAT9.

3. Post-processing of the data provided by the memory analyzer.

The result of step 2 typically is a large list of strings originating from all instan-

tiated java.lang.String classed found in the application’s heap. This list can

be post-processed to find patterns which are likely to be data of forensic interest,

such as account names and passwords.

While this is a valid approach, it contains some flaws we try to circumvent in this

thesis.

First, acquiring a heap dump is only possible for applications prepared for de-

bugging. When developing Android applications, there is a flag called android:

debuggable= in the application’s configuration file named AndroidManifest.xml.

9http://www.eclipse.org/mat/

http://www.eclipse.org/mat/
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When set to true, it causes the application to open a debug port whenever the

application is started on the target device. This port can be used by DDMS to

acquire a heap dump from an application running on a device which is physically

connected to a computer system. While the corresponding debug option is typi-

cally set to true during times of development, it is supposed to be disabled when

an application is released to the public. If set to false, DDMS has no means of

acquiring the heap dump. Although there is a way to modify the value of the

debug option after the application has been installed, it is not applicable to real-

world scenarios. This would include transferring the corresponding APK-file to a

PC, unpacking it, modifying the AndroidManifest.xml, repacking and resigning

the application. However, this will cause the application to get restarted at least

once, invalidating the heap it was formerly using and which was intended to be

investigated.

Second, even if the heap dump can be acquired, the possibilities for further anal-

ysis are limited. Although it is possible to read plain strings, there is no way to

acquire more sophisticated artifacts such as whole class objects or even binary

data.

Third, the solution proposed in this thesis composes a general way for investigat-

ing an Android system together with certain applications. Once the correspond-

ing plugins have been written, they do not depend on having a specific memory

dump available. There is one plugin for a specific application and task which can

be used independently from the available memory dump.

Last but not least, the solution created in the context of this research project

empowers a forensic investigator to analyze arbitrary applications, whether he

has access to the application’s source code, or even the application’s APK, at all.

However, none of the mentioned research projects provide a solution for live

memory forensic analysis on Android in a general way. This will be solved by

taking the whole software stack into account. The solution proposed in this thesis

is based on, and consequently continues the work done by Sylve et al. (2012).
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2.6. Test Setup and Development Environment

For performing the investigations and tasks outlined in this thesis, we made use of

two smartphones. A Samsung Galaxy S2 (I9100) and a Huawei Honor (U8860).

Both are running Android version 4.0.3, also known as Ice Cream Sandwich.

Therefore, all findings and created software will be based on this version.

In case of Volatility, a branch called 2.3-devel will be used. This branch already

includes the ARM support targeted for the final 2.3 release. Thus, the created

plugins should work with anything equal or greater than version 2.3.

In Chapter 3, we introduce a kernel module called LiME. The module version

this thesis is based on is version 1.1.

Each application which is analyzed in Chapter 6 will have a specific version.

Those will be defined on the spot.

2.7. Thesis Goals and Development Process

The goal of this thesis is to provide a way of analyzing the complete software

stack of an Android-based device, from bottom, to top. At the bottom, we aim

to depict a concrete method how to acquire the physical memory, while at the

top we create solutions to investigate common Android applications. The work

done in this project lays the foundation, provides infrastructure support and

shows some exemplary plugins to continue upon. The following steps have been

identified to be mandatory for a thorough investigation of the whole Android

software stack:

1. Memory Acquisition from Android devices (Chapter 3)

2. Memory Analysis of the operating system’s kernel (Chapter 4)

3. Memory Analysis of the Dalvik Virtual Machine (Chapter 5)

4. Memory Analysis of specific Android Applications (Chapter 6)

For Steps (1) and (2), we depict and make use of already available solutions.

However, up to date, no solutions exist for Steps (3) and (4) which requires own

evaluation of the concepts and underlying data structures. We investigate single
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Dalvik Virtual Machine instances to be able to create different Volatility plugins

to read their data in an application independent way. The gained information

is then used to perform investigation of three popular Android applications to

illustrate its usage. The outcome are plugins for each of those applications which

can be used to perform real-world forensic investigations. In the end, we should

have created a stack of plugins which makes it possible to perform forensic inves-

tigations for arbitrary applications with little effort. All source code is supposed

to be released under an open source license and should be submitted to the cor-

responding upstream project for knowledge sharing and inclusion.

Figure 2.1 illustrates the document structure and development process used in

this thesis.

Figure 2.1.: Outline of the Forensic Investigation of the Android Software Stack

As a first step, the memory acquisition builds the foundation for all further anal-

ysis. Together with the preparation of the targeted mobile device and required

software, Chapter 3 will outline the process of capturing memory images. In

Chapter 4, we will evaluate different plugins for Linux kernel memory analysis

which are already available, but crucial for every forensic investigation and for the
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forthcoming of this project. Their purpose is to read data from the Android ker-

nel, which is a Linux kernel after all. We will look at their usage, functionality and

underlying concepts. Chapter 5 depicts the internals of the data structures con-

tained in the Dalvik Virtual Machine and we will create the necessary Volatility

plugins to extract the corresponding artifacts. Together with extracting platform

data common to all DalvikVM instances, we also gain application specific knowl-

edge. This lays the foundation and provides the means for being able to analyze

specific Android applications together with creating their task-specific plugins in

Chapter 6.



3. Memory Acquisition from Android Devices

This chapter consists of three main sections. The first section will discuss avail-

able memory acquisition methods together with their obstacles. In the second

section, we describe the required steps for properly preparing a smartphone for

the tasks performed in the upcoming Chapters 4, 5, and 6. This includes physical

access, unlocking the boot loader, rooting, and setting up a proper development

environment. The third section depicts the concrete acquisition method with in-

troducing a kernel module named LiME, how to make it available for the target

device, and outlines the overall memory acquisition process.

3.1. Acquisition Methods

In order to analyze memory images, a copy of the RAM from a target device is

required. There are two basic ways to acquire such data, by means of physical

access, or remotely. However, no research making the latter possible on Android

is currently known, so direct device access is the method of choice.

Sylve et al. (2012) evaluated local acquisition methods in their paper named

“Acquisition and analysis of volatile memory from android devices”. A kernel

module called fmem which creates a character device to read the physical memory

from was considered unsuitable, because it makes use of kernel functions which

are not available on the ARM platform. Furthermore, the tool called dd which

is used to read the memory from the character device is flawed on some Android

devices and thus, cannot be used as a general solution. Another module which

has been considered, but faces the same problems with dd, is called crash. Both

methods use a solution divided into a kernel space (the module) and a user space

(dd) part. Due to the resulting context switches, Sylve et al. (2012) found out

that only 80% of the original memory could be recovered, rendering both solution

unsuitable. The outcome of their own research about a platform-independent

acquisition method a is a newly developed kernel module called LiME. It will be

14
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loaded into the kernel running on the target device and a detailed description

can be found in Section 3.3.1.

However, one common problem all modules have to face are the security mecha-

nisms of the kernel running on the target device. The Linux kernel uses a security

mechanism called module verification (Sylve et al., 2012). It is intended to pre-

vent the kernel from accepting incompatible or possibly malicious code to be

inserted into the operating system. For instance, checksum information is stored

for each function or structure definition corresponding to the kernel the module

is compiled against. When the kernel tries to load a module, it tries to match

this information, and if it does not succeed, it prevents the module from being

loaded. There have been efforts to bypass these checks in the past, however, none

of the solutions is perfect (Sylve et al., 2012). After all, no research making it

possible to load a module in a kernel-agnostic way is currently known.

Instead of looking for a generic solution, an alternative approach is to create a

pool of precompiled modules. Every module in the pool is compiled against a

specific kernel, basically there is one module for each device and Android version.

This is feasible for every device for which the corresponding vendor releases the

kernel source code together with its build configuration. When trying to acquire

the memory from a specific device, the corresponding module could be transferred

to the device, loaded into the kernel, and used for dumping the main memory.

For the ease of this project, an own kernel needs to be installed and used on

the target device. The LiME module will then be compiled against this specific

kernel and can be loaded into the target operating system.

3.2. Prerequisites

3.2.1. Phone Preparation

To be able to load a module into the kernel, we need to bypass some security

mechanisms. In the case of Android, one of them is unlocking the boot loader to

be able to install a custom kernel on the target device. Another one is gaining root

privileges, which is also referred to as rooting or jailbreaking (Wikipedia, 2012b).

In general, due to the fact the Android runs a Linux kernel, basically every
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possibility of gaining administrator privileges for a Linux system also applies to

Android. For instance, this can be accomplished by exploiting common security

weaknesses in poorly written software, like it is done in a method called “Rage

against the Cage” (Krahmer, 2010). What method works depends heavily on the

device and the Android version it is powered by. The same applies to unlocking

the boot loader, where every vendor might use a different technique to secure

its boot process. Because of this, this thesis assumes that an unlocked, rooted

device is already available, thus a concrete method will not be shown.

After rooting has been accomplished, the preferred method of transferring arbi-

trary binaries to the phone is using adb. It is a tool provided by the Android SDK

and can also be used for debugging, diagnosis, and development. Once the phone

has been physically connected (USB) to the development system, a custom kernel

and the acquisition module (discussed in Section 3.3.1) can be transferred to the

rooted phone and loaded into the operating system. The concrete method for

exchanging the running kernel on a target device differs from vendor to vendor,

so no common guideline can be provided at this point.

The development system needs to be capable of running adb. In order to use

it, another thing needs to be assured: Android phones usually contain an option

called USB debugging. It needs to be activated on the device. Starting from ver-

sion 4 of Android, the corresponding switch can be found in Settings->Developer

Options in the settings menu of the device.

3.2.2. Development Environment and Toolchain

Another prerequisite is the ability of the development system to provide a de-

velopment environment and to produce software which is running on the target

system. For this purpose, the Android SDK needs to be downloaded, installed,

and configured correctly. The concrete steps include unpacking a compressed

software archive to a common place and adjusting so-called PATH-variables for

the binaries to be accessible from any location within a shell. From this point

onwards, it is assumed that this has been accomplished, and a working copy of

the development environment including compilers, an emulator, and the adb tool

is available.

The precompiled tools provided by the standard Android SDK are supposed to
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run on a system powered by the x86 architecture. However, on most target devices

this is not the case. Instead, as of now, ARM is quite common on devices running

Android. This is the reason why all tools, modules, and binaries that need to run

on the target device, need to be compiled on a host system for a specific target

system first. This is also knows as cross compilation (Wikipedia, 2012d) and a

cross compiler able to produce binaries for the target system is provided by the

Android SDK. It is called gcc, the GNU Compiler Collection1. Before a kernel

module can be compiled with the available toolchain, two environment variables

need to be set on a common GNU/Linux system:

$ export ARCH=arm

$ export CROSS_COMPILE=$CCOMPILER

In this case, the variable $CCOMPILER contains the full path to the gcc binary.

After the prerequisites have been set, the next step is to look at the actual memory

acquisition, also known as memory imaging.

3.3. Memory Imaging

When trying to capture volatile memory from a mobile device, forensic soundness

needs to be assured. A forensically sound process basically means that the method

of gathering digital evidence alters the evidence as little as possible. The outcome

should not be significantly different to the state before the memory acquisition.

Several methods of gathering volatile memory from Linux systems have been

evaluated by Sylve et al. (2012). They come to the conclusion that none of the

existing solution are feasible for the Android platform. The result, also in regard

to forensic soundness, was the development of a kernel module called LiME, the

Linux Memory Extractor2, formerly known as DMD. The underlying principles,

the usage, and the LiME image format will be briefly discussed in the next

sections.

1http://gcc.gnu.org/
2http://code.google.com/p/lime-forensics/

http://gcc.gnu.org/
http://code.google.com/p/lime-forensics/
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3.3.1. LiME Kernel Module

The memory acquisition module used in this thesis is called LiME. It can be

loaded into Linux kernels such as those running on Android devices to dump

the physical memory either to a local file or over the network. LiME is the first

module to allow full memory captures from Android devices (Sylve et al., 2012).

To get more forensically sound results than with what was already available

for common Linux systems, the authors payed special attention to minimizing

interaction between kernel and user space during acquisition.

In order to acquire the physical memory from the operating system, the LiME

module makes use of a kernel structure called iomem_resource (cf. Listing 3.1)

to get the physical memory address ranges. Each iomem_resource has a field

named start which marks the start of the physical memory and a field named

end, which marks the end, respectively. Furthermore, the specific I/O memory

resources which represent the physical memory regions are tagged by a field name

which value has to be “System RAM”. This is the case on at least X86 and ARM

architectures. Memory images can either be written to a SD card attached to the

target device or can be dumped via TCP to a host computer (Sylve et al., 2012).

The latter is the method of choice in this thesis (cf. Section 3.4).

Listing 3.1: struct iomem resource

struct resource iomem_resource = {
.name = "PCI mem",
.start = 0,
.end = -1,
.flags = IORESOURCE_MEM,

};

3.3.2. LiME Image Format

The LiME module version 1.1 offers three different image formats a memory

image can be captured in (Joe Sylve, 2012). The format used is determined by

a parameter passed at the command line when the module is loaded. The raw

image format just concatenates all system RAM ranges and writes them either

to disk or over TCP. The second method is called padded and includes all non
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system address ranges in the output. However, those ranges do not contain their

original content, it is replaced with 0s. This causes the output to become a lot

larger than actually needed.

The third format called lime is discussed in more detail because it is the method

of choice in this research project. The lime format has been especially developed

to be used in conjunction with Volatility. It is supposed to allow easier analy-

sis, because a special address space to deal with this format has been added to

Volatility.

Every memory dump based on the lime format has a fixed-size header, containing

specific address space information for each memory range. This eliminates the

need of having additional padding just to fill up unmapped memory regions. The

LiME header specification version 1 can be seen in Listing 3.2 (Joe Sylve, 2012).

Listing 3.2: LiME Image Format Header

typedef struct {
unsigned int magic; // Always 0x4C694D45 (LiME)
unsigned int version; // Header version number
unsigned long long s_addr; // Starting address of physical RAM
unsigned long long e_addr; // Ending address of physical RAM
unsigned char reserved[8]; // Currently all zeros

} __attribute__ ((__packed__)) lime_mem_range_header;

3.3.3. LiME and Kernel Cross Compilation

To make use of the LiME module, it needs to be cross-compiled to run on the

target device. Furthermore, a compatible kernel is needed which needs to get

installed on the target, too.

In order to do so, the source code for a kernel including the appropriate drivers

is needed. Fortunately, some vendors provide such a kernel. For instance, for

the primary device used in this project, a Samsung Galaxy S2 running Android

version 4.0.3, a compressed archive containing the Linux kernel can be down-

loaded from the Samsung homepage3. After unpacking the archive named GT-

I9100_ICS_Opensource_Update7.zip to a directory, the commands need to be

executed to compile the kernel:

3http://opensource.samsung.com

http://opensource.samsung.com
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$ export ARCH=arm

$ export CROSS_COMPILE=<path to Android SDK toolchain compiler>

$ make u1_defconfig

$ make

The first two commands will export environment variables used by the build

system to define the target architecture and used compiler. The first make-

command configures the build system while the seconds starts the actual build

process. A lot of information about this topic can be found on the web. One

example for possible troubleshooting are the XDA developer forums4.

After successful kernel compilation, the kernel image can be found at arch/arm

/boot/zImage. To be able to use the kernel on the target device, a so called

boot image (boot.img) needs to be created which includes the created kernel and

an initial RAM filesystem used for booting. The easiest way to create it is by

fetching the existing boot image from the target device and just exchanging the

kernel. For flashing the zImage to the device, a flash tool is required. Popular

ones are Odin5 (MS Windows) and Heimdall6 (Linux). After the new kernel has

been installed on the target device, the next step is to compile the LiME module.

To do so, the source code can be downloaded from the homepage7 as a compressed

archive. After unpacking the tar ball and changing to the src/ directory, a simple

make command should result in a file name called lime.ko. This is the actual

kernel module and should be copied to the device to an arbitrary location. adb

is likely to be best suited for this task. For the further course of this thesis, it

is assumed that the module can be found on a SD card attached to the device

at /sdcard/lime.ko. Now that all prerequisites have been met, we are able to

capture the actual memory images.

3.4. Acquisition Process

Now that the LiME module is available on the target device and can be loaded

into a matching kernel, the next step is the memory image acquisition. In order

4http://forum.xda-developers.com/
5http://forum.xda-developers.com/showthread.php?t=1347899
6http://forum.xda-developers.com/showthread.php?t=755265
7http://code.google.com/p/lime-forensics/downloads/list

http://forum.xda-developers.com/
http://forum.xda-developers.com/showthread.php?t=1347899
http://forum.xda-developers.com/showthread.php?t=755265
http://code.google.com/p/lime-forensics/downloads/list
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to dump the physical memory via TCP, the smartphone needs to be connected

to the host computer via USB. Afterwards, a TCP tunnel is created via port

forwarding on both the host and the target. The kernel module dumps the

physical memory over this tunnel to the host system. Assuming the module can

be found at /sdcard/lime.ko, the following sequence of commands need to be

executed to dump the physical memory over TCP to a file on the host:

Host:

$ adb forward tcp:4444 tcp:4444 # port number 4444

$ adb shell # creating a shell on the target device

$ su # creating a root shell

Target:

$ insmod /sdcard/lime.ko "path=tcp:4444 format=lime"

Host:

$ nc localhost 4444 > ram.lime

In the last step, nc (netcat) connects to localhost on port 4444 and writes the

received dump to the file ram.lime in the current directory. This is the actual

RAM dump and can be used for further analysis.

3.5. Summary and Outlook

In this chapter, we have seen that the available memory acquisition methods for

mobile devices are not perfect. This continues to be an area for further research.

We depicted a feasible solution to perform physical memory acquisition from

an Android-based mobile device. The resulting memory images will be post-

processed in the remaining parts of this thesis. These parts focus on the actual

memory analysis and start with Linux Kernel Analysis, which can be considered

Android Kernel Analysis at the same time.



4. Linux Kernel Analysis

Chapter 3 outlined how to acquire RAM dumps from the mobile devices, while

in this chapter we use the acquired memory dumps to show how to do Linux

kernel analysis. At first, we still disregard Android-specific analysis and concen-

trate solely on Linux memory forensics. After all, all Linux plugins provided by

Volatility are actual Android plugins, too, because they only parse kernel data

structures. After depicting how to create Volatility profiles, we show what Linux

support is already provided by the framework. The profiles are required in order

to use the acquired RAM dumps together with the analysis framework. After-

wards, we introduce some available Linux plugins, their usage and underlying

concepts. This will assist in understanding the way Volatility parses memory ar-

tifacts. Also, some of them will be used in a later chapter when doing DalvikVM

and application analysis.

4.1. Prerequisites

The first prerequisite is an actual memory dump. For the purpose of this chapter,

it can be captured from any system, no matter if Android or from a standard

Linux distribution. To make the image work together with the Volatility frame-

work, we have to create a so-called profile. Afterwards, a short section will briefly

introduce the Volatility usage.

4.1.1. Creating the Volatility Profile

Before image analysis can happen, a profile needs to be created which can passed

to Volatility on the command line. A Volatility profile is a set of vtype definitions

and optional symbol addresses. The concept of vtype definitions, also known as

vtypes, will be depicted in Section 5.2.1.
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After downloading and extracting the source code from the Volatility homepage,

some of the default included profiled can be seen in Listing 4.1.

Listing 4.1: Volatility Profiles

$ python ./vol.py --info

--------
LinuxDebian2632x86 - A Profile for Linux Debian2632 x86
VistaSP0x64 - A Profile for Windows Vista SP0 x64
VistaSP0x86 - A Profile for Windows Vista SP0 x86
VistaSP2x86 - A Profile for Windows Vista SP2 x86
Win2003SP0x86 - A Profile for Windows 2003 SP0 x86
Win2003SP1x64 - A Profile for Windows 2003 SP1 x64
Win2008R2SP0x64 - A Profile for Windows 2008 R2 SP0 x64
Win2008R2SP1x64 - A Profile for Windows 2008 R2 SP1 x64
Win2008SP1x64 - A Profile for Windows 2008 SP1 x64
Win7SP0x86 - A Profile for Windows 7 SP0 x86
Win7SP1x64 - A Profile for Windows 7 SP1 x64
WinXPSP2x64 - A Profile for Windows XP SP2 x64

There exist several profiles for Microsoft operating systems, while for Linux there

is only one. There are two main reasons for that: First, Volatility development has

started from a Microsoft Windows point of view. So because Linux and Android

support is quite new, there are less corresponding profiles available by default.

Second, there are a lot more different flavours of different kernels available in the

Linux and Android market. For Windows, there is basically always just one most

recent version available. Being it Windows 8, Windows 7 or Windows 2000. And

even for those versions, there are basically only up to four or five service packs

which makes the overall number rather manageable. At least when compared to

Linux.

For Linux, there are always a number of competing distributions such as Fedora,

openSUSE or Ubuntu. Every release they publish ships with a different kernel.

The situation is even worse when looking at Android. Every single hardware

vendor such as HTC, Samsung or LG, usually has multiple devices for sale. Each

of those running a different kernel, which multiplies quite fast. The problem with

that is that each kernel needs its own Volatility profile. This basically leads to

the need for creating an own profile for every smartphone used for a forensic

investigation.
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The Volatility wiki1 describes a profile as follows:

“A Linux Profile is essentially a zip file with information on the ker-

nel’s data structures and debug symbols. This is what Volatility uses

to locate critical information and how to parse it once found.[...]”

(Volatilesystems, 2012)

A profile is a compressed archive containing two files: A System.map and module

.dwarf.

System.map

The System.map file contains the name and addresses of static data structures in

the Linux kernel. Depending on the kernel’s build configuration, it is typically

created at the end of the compile process (cf. Section 3.3.3). For this purpose, a

tool called nm is executed, taking the compressed kernel image called vmlinuz as

a parameter. Basically on all major Linux distributions, the System.map file can

be found in the /boot directory alongside with the actual kernel. In the case of

Android, were a special kernel is compiled, it can be found in the kernel source

tree after successful kernel compilation.

module.dwarf

The module.dwarf file emerges by compiling a module against the target kernel

and afterwards extracting the DWARF debugging information out of it. DWARF

is a standardized debugging format used by some source level debuggers to es-

tablish a logical connection between a output binary and the actual source code

(Eager & Consulting, 2007). The DWARF debugging information is generated by

the compiler and included in the output. In case of reading RAM dumps, it can

also be exploited to provide valuable information about structure and method

layouts and is used by Volatility for that purpose.

In order to create the module.dwarf, a utility called dwarfdump2 is required. The

Volatility source tree contains a directory tools/linux/ and running make in that

directory should compile the module and produce the desired file.

1https://code.google.com/p/volatility/wiki/LinuxMemoryForensics
2http://reality.sgiweb.org/davea/dwarf.html

https://code.google.com/p/volatility/wiki/LinuxMemoryForensics
http://reality.sgiweb.org/davea/dwarf.html
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Creating the Profile

Creating the actual profile is then just one simple step:

$ zip <profile_name>.zip <path_to_module.dwarf> \

<path_to_System.map>

The resulting ZIP-file needs to be copied to the Volatility source tree to volatility

/plugins/overlays/linux/. If everything is successful, the profile should show

up in the profiles section of the Volatility help output (cf. Listing 4.1). At all

further invocations of Volatility, it has to be passed with the –profile switch as a

parameter.

4.1.2. Volatility Usage

Volatility uses the notion of address spaces for supporting different kind of mem-

ory dumps. For instance, it can read plain files, images acquired via Firewire,

ARM images, and last but not least, the LiME format which has been discussed

in Section 3.3.2. It was explicitly added to support the interaction with the newly

developed LiME module, introduced in the same section. Volatility will probe the

file format in a stacked fashion one after another and will figure out the correct

address space by itself. This does not require any specification at the command

line.

When looking at individual plugins in Section 4, it is important to be aware of

the basic concepts of how Volatility treats individual data objects. It uses an

object factory to deal with structure definitions. To quote the Volatility wiki:

“Objects are the base element in volatility, and any time that data is

needed from an address space it will usually be accessed through an

object.

[...]Objects are designed to behave as one would expect their python

equivalents to behave (so a value that should be an int, should behave

and have the same functions applicable to it, as a normal integer).[...]”

(Volatilesystems, 2012)

The source code Listing 4.2 shows a typical way of data accessed in Volatility.

The parameters of the obj.Object() function have the following meaning:
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Listing 4.2: Volatility Object Usage

1 #!/usr/bin/python
2

3 task = obj.Object(theType = "task_struct", vm = self.addr_space,
offset = task_addr)

4 print task.comm

• theType: The type of the object and thus the actual layout of the data

structure referenced by it.

• vm: The address space in which the object can be found. In the beginning,

all addresses are virtual and need to be translated to physical offsets inside

the RAM dump. The given address space usually is the address space of

the process the object is used in.

• offset: The offset within the object’s address space.

In this example, we are referencing an object of type task_struct within the

kernel’s address space at offset task_addr. The third line in Listing 4.2 accesses

the structure member named comm.

To access the member fields, Volatility is aware of the individual offsets. Those

can either be given by so-called “vtype definitions” (cf. Section 5.2.1) or figured

out automatically by parsing the involved header files (cf. struct task_struct

in Listing 4.3). For instance, the member field state can be found at offset 0,

the void pointer stack at offset 4 and usage at offset 8. These are explanatory

values for an arbitrary compiler and a 32-bit architecture.

The first prerequisite when running a Volatility plugin is to specify a proper

profile. It is given to Volatility at the command line via the –profile switch.

Additionally, the actual RAM dump is required and given as a parameter to -f.

At the end of the command line, the plugin name followed by plugin specific, but

optional parameters are given. A typical command line call might look as seen

in Listing 4.4.
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Listing 4.3: struct task struct

struct task_struct {
volatile long state;
void *stack;
atomic_t usage;
unsigned int flags;
unsigned int ptrace;

/* [...] */
char comm[TASK_COMM_LEN]; /* executable name excluding path */
/* [...] */

}

Listing 4.4: Typical Volatility Usage

$ ./vol.py --profile=ProfileName
-f /path/to/memory/dump.lime
plugin_name -p option_parameter

4.1.3. Volatility Plugin Structure

When creating Volatility plugins, and for the better understanding of existing

ones, we need to be aware of the general plugin structure. The plugin framework

in Volatility has been designed with a modular approach. The plugins should

be usable as standalone components called from the command line. However, it

should also be possible that they are used by each other. Every plugin is able to

call another one. More important, the results from one plugin can be used for

further processing.

Listing 4.5 illustrates the basic four elements each plugin consists of.
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Listing 4.5: Volatility Plugin Structure

class plugin_name():
def __init__():

[...]
def calculate(self):

[...]
def render_text(self, outfd, data):

[...]

The first is the plugin’s name. It equals the class name and defines the name

the plugin will have in the help output and when called on the command line.

Then there are three methods. __init__() is the constructor of the class object

and typically used for calling the super class constructor or for registering plugin

specific command line options.

To be able to use the plugins from both source code and the command line, each

one is separated into a calculate() and a render_text() method. The first does

the actual calculations, reading the data from the dump, parsing it, preparing it

for output. This is the method which is called from other plugins when no direct

output and just the results are required. The render_text() function is called

by the underlying framework whenever there is the request to print the data on

the screen, typically when called from the command line.

All the Volatility plugins reside in the directory volatility/plugins/linux/

within the source tree. New ones need to be placed in this directory, too, in order

for the framework to find them.

4.2. Volatility Plugins for Linux

After showing the existing Linux support in Volatility, we will look at a chosen set

of Linux plugins, together with their underlying data structures, implementation

and output.

4.2.1. Existing Linux Support in Volatility

Although Android support in Volatility is quite new, Linux support is not. Be-

cause of that, a number of corresponding Linux plugins are already available.
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They are listed in Listing 4.6 which shows an excerpt from the Volatility help

output.

Listing 4.6: Volatility Linux Plugins

$ python ./vol.py --info

Plugins
-------
linux_arp - Print the ARP table
linux_cpuinfo - Prints info about each active processor
linux_dmesg - Gather dmesg buffer
linux_dump_map - No docs
linux_ifconfig - Gathers active interfaces
linux_iomem - Provides output similar to /proc/iomem
linux_lsmod - Gather loaded kernel modules
linux_lsof - Lists open files
linux_memmap - Dumps the memory map for linux tasks.
linux_mount - Gather mounted fs/devices
linux_netstat - Lists open sockets
linux_pidhashtable - Enumerates processes [...]
linux_proc_maps - gathers process maps for linux
linux_psaux - gathers processes [...]
linux_pslist - Gather active tasks [...]
linux_psxview - Find hidden processes [...]
linux_route_cache - Lists routing table

In the following, we will have a deeper look at the implementation and underlying

concepts of a subset of these plugins. On the one hand, this will illustrate how

Volatility makes use of kernel structures to read the forensic data. On the other

hand, the still to be created Android plugins will make use of some of them.

4.2.2. Plugin: linux pslist

The linux pslist plugin enumerates all the running processes in the system, similar

to the Unix command ps:

Listing 4.7: Example linux pslist Output

$ ./vol.py [...] linux_pslist

Volatile Systems Volatility Framework 2.1_rc3

Offset Name Pid Uid Start Time

0xe6880000 init 1 0 Wed, 26 Sep 2012 17:01:21
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0xe6880520 kthreadd 2 0 Wed, 26 Sep 2012 17:01:21

[...]

0xd9e4e3e0 .MtpApplication 4755 1000 Wed, 26 Sep 2012 17:03:25

0xd13723e0 id.defcontainer 4809 10091 Wed, 26 Sep 2012 17:03:49

0xd5337860 android.musicfx 4838 10140 Wed, 26 Sep 2012 17:03:55

For this purpose, Volatility makes use of the init_task structure defined within

init/init_task.c in the Linux kernel source tree. It is a task_struct structure

declared in include/linux/sched.h. The member field tasks, which is the head

of a linked list, can be used to iterate over all running processes. In Python code,

this looks as seen in Listing 4.8.

Listing 4.8: Shortened linux pslist Implementation

1 init_task_addr = self.smap["init_task"]
2 init_task = obj.Object("task_struct", vm = self.addr_space,

offset = init_task_addr)
3 for task in init_task.tasks:
4 yield task

In Line 1, the offset of the init_task structure within the memory dump is stored.

It can be read from the System.map file provided by the profile (cf. Section 4.1.1).

This is used in Line 2 to create an Object via the Volatility object factory. The

Object represents a single task structure. Finally, the code walks the linked list

containing all tasks and passes it to a output method via a generator function.

The linux psaux plugin not shown here uses a similar approach, just displays

different information. The next plugin looked at is linux ifconfig.

4.2.3. Plugin: linux ifconfig

linux ifconfig simulates the Linux ifconfig command. It lists the available net-

work interfaces, together with their names, IP and MAC addresses (cf. Listing

4.9).

The corresponding source code (cf. Listing 4.10) first checks for the offset of

net_namespace_list in the System.map, which is a kernel structure holding all

network namespaces. Afterwards, it walks those network namespaces (Line 4)

and iterates over all devices (Line 6), looking for those configured for the internet
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Listing 4.9: Example linux ifconfig Output

$ ./vol.py [...] linux_ifconfig

Volatile Systems Volatility Framework 2.1_rc3
lo 127.0.0.1 00:00:00:00:00:00
sit0 0.0.0.0 00:00:00:00:00:00
ip6tnl0 0.0.0.0 00:00:00:00:00:00
rmnet0 10.167.81.201 d6:b6:f6:00:e4:02
rmnet1 0.0.0.0 4a:23:45:80:05:05
rmnet2 0.0.0.0 00:00:00:00:00:00

protocol (cf. in_device), Wehrle et al. (2005)). In Line 7, the result is handed

over to the output function.

Listing 4.10: Shortened linux ifconfig Implementation

1 nslist_addr = self.smap["net_namespace_list"]
2 nethead = obj.Object("list_head", offset = nslist_addr, vm = self

.addr_space)
3

4 for net in nethead.list_of_type("net", "list"):
5 for net_dev in net.dev_base_head.list_of_type("net_device",

"dev_list"):
6 in_dev = obj.Object("in_device", offset = net_dev.ip_ptr, vm =

self.addr_space)
7 yield net_dev, in_dev

4.2.4. Plugin: linux route cache

Together with knowledge about available and configured network interfaces (cf.

Section 4.2.3), a forensically more interesting plugin is the linux route cache plu-

gin. As the name might suspect, it reads and prints the route cache. This cache

stores recently used routing entries in a fast hash lookup table. Thus, the goal is

to extract this hash table out of an acquired RAM dump. When successful, this

information could be used to make assumptions about possible network traffic

happening in the past. The output Listing 4.11 shows three columns. The first is

the interface name, the second the source, followed by the destination IP address.

Three symbols read from the System.map are of interest for the plugin implemen-

tation:
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Listing 4.11: Example linux route cache Output

$ ./vol.py [...] linux_route_cache

Volatile Systems Volatility Framework 2.1_rc3
rmnet0 173.194.35.0 10.167.81.1
lo 127.0.0.1 127.0.0.1
rmnet0 195.71.11.67 10.167.81.1
rmnet0 212.18.3.18 10.167.81.1
rmnet0 212.18.3.18 10.167.81.1
rmnet0 63.116.58.131 10.167.81.1
rmnet0 173.194.35.9 10.167.81.1

• rt_hash_mask: Number of buckets in the hash. Due to the nature of the

data structure hash, not every bucket needs to have a valid entry. This

variable is initialized in net/ipv4/route.c in the kernel source tree.

• rt_hash_table: A pointer to the actual hash table. Also initialized in

net/ipv4/route.c.

• rt_hash_bucket: Represents one single hash entry. A bucket contains a

pointer to a structure named rtable (cf. include/net/route.h) containing

all the routing information needed for the plugin.

The implementation in Listing 4.12 first creates the corresponding objects for the

symbols found in System.map (Line 1 to 3). Starting from Line 5, the code checks

all bucket slots and bails out if an entry is not valid. The name (Lines 11 to 14),

the destination (Line 15), and the gateway (Line 16) are read and handed over

to the output function in Line 18.
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Listing 4.12: Shortened linux route cache Implementation

1 mask = obj.Object("unsigned int",offset = self.smap["rt_hash_mask
"], vm = self.addr_space)

2 rt_pointer = obj.Object("Pointer", offset = self.smap[
"rt_hash_table"], vm = self.addr_space)

3 rt_hash_table = obj.Object(theType = "Array", offset = rt_pointer
, vm = self.addr_space, targetType = "rt_hash_bucket", count =
mask)

4

5 for i in range(mask):
6 rth = rt_hash_table[i].chain
7 if not rth:
8 continue
9 dst = rth.dst

10

11 if dst.dev:
12 name = dst.dev.name
13 else:
14 name = "*"
15 dest = rth.rt_dst
16 gw = rth.rt_gateway
17

18 yield (name, dest, gw)

4.2.5. Plugin: linux proc maps

linux_proc_maps is the first plugin which will be directly required for implement-

ing the Android and DalvikVM plugins in Section 5.1. When having direct access

to a system running a shell, /proc/$PID/maps can be read for each individual

process to acquire its memory mappings. Among others, the file lists the virtual

memory addresses and access flags of the heap, stack, and dynamically linked

libraries mapped into the process address space. The linux_proc_maps plugin

reads the same information from a memory dump and tries to simulate the exact

same output. An example is shown in Listing 4.13. Called without a parameter,

the plugin lists the process maps of all running processes by making use of the

linux pslist plugin seen in Section 4.2.2. Given a parameter -p, the output can

be limited to a specific PID.

The implementation (cf. Listing 4.2.5) iterates over all mappings found in either

all or one task in Lines 1 to 4. It passes the results over to the output function. In

order to do so, it uses the walk_internal_list() helper method. In source code
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Listing 4.13: Example linux proc maps Output

$ ./vol.py [...] linux_proc_maps -p PID

Volatile Systems Volatility Framework 2.1_rc3
0x8000- 0xa000 r-x 0 259: 1 302 5398 /system/bin/

app_process
0xa000- 0xb000 rw- 8192 259: 1 302 5398 /system/bin/

app_process
[...]
0x40c30000-0x40c31000 rw- 303104 259: 1 902 5398 /system/lib/

libdbus.so
0x40c31000-0x41513000 rw- 0 0: 4 4153 5398 /dev/ashmem/

dalvik-heap
[...]
0x408f9000-0x409aa000 r-x 0 259: 1 915 5398 /system/lib/

libdvm.so
0x409aa000-0x409b2000 rw- 724992 259: 1 915 5398 /system/lib/

libdvm.so

Listing 4.14: Shortened linux proc maps Implementation

1 for task in tasks:
2 if task.mm:
3 for vma in linux_common.walk_internal_list("vm_area_struct",

"vm_next", task.mm.mmap):
4 yield task, vma
5 [...]
6 def walk_internal_list(struct_name, list_member, list_start,

addr_space = None):
7 if not addr_space:
8 addr_space = list_start.obj_vm
9

10 while list_start:
11 list_struct = obj.Object(struct_name, vm = addr_space, offset

= list_start.v())
12 yield list_struct
13 list_start = getattr(list_struct, list_member)

Line 11, a vm_area_struct object is created before reading the next item vm_next

embedded in that structure. vm_area_struct is a kernel structure located in

include/linux/mm_types.h.
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4.3. Summary and Outlook

In this chapter, we showed how to use memory images with the Volatility frame-

work by creating the corresponding profiles, one for each system and kernel ver-

sion. We then introduced some commonly used Linux plugins. Some of them

will help to analyze applications in Chapter 6, others will be directly used by the

new plugins created in the same chapter.

Everything shown up to here is common to all systems running a Linux kernel.

The further course of this thesis will focus on Android. We will have a look into

the internals of the DalvikVM and will create plugins specifically designed to

support forensic investigations of DalvikVM instances.
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This chapter can be split into two central aspects:

Section 5.1 will outline some concepts of the DalvikVM, what data is stored in

each instance, and how Java classes are implemented. For this purpose, a short

supplement will depict the concept of Java reflection. We will also look at the way

how to recover instance objects from physical memory with reverse engineering

their implementation.

The second part is Section 5.2, which will concentrate on the Volatility framework.

We show the basic structure of plugins, depict how Volatility is aware of certain

objects and their layout in memory, and illustrate how to use that information to

parse Java objects. After describing the purpose of some helper functions, we will

finally create plugins to analyze DalvikVM instances corresponding to concrete

applications.

5.1. DalvikVM Analysis

The memory images acquired in a previous chapter represent the state of the

system it was in at the time of acquisition. They contain the whole application’s

state and all its data, including the one from the virtual machine it is running in.

This section will convey the underlying concepts and how to parse the internal

data structures contained in the DalvikVM implementation.

5.1.1. Sharing Classes Amongst DalvikVM Instances

Each application runs in its own DalvikVM. However, certain data, such as often

used classes and static class information are shared amongst all processes. The

first process which is started and runs in a DalvikVM is called zygote. It is started

at boot time and preloads and preinitializes classes which are later shared with

36
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other processes. Those classes are called system classes and referred to as such

in the further course of this thesis. The zygote process is also responsible for

forking further DalvikVM processes. It listens on a Unix socket for requests on

starting applications and forks, using itself as a kind of template. Whenever

a forked process reads data from a system class, the class information remains

in the zygote’s shared memory space. However, if a system class is accessed in

a read-write fashion, the class information is copied over into the process own

address space. This copy-on-write behaviour is different from the traditional

Java Virtual Machine concept, where each process gets a full copy of all classes

it requires (Bornstein, 2006). This knowledge is useful for understanding the

forensic techniques used at a later time in this thesis.

5.1.2. Data Contained in the Dalvik Virtual Machine

The first question to answer is about what should be extracted out of an existing

memory image. More specifically, the question is about what data is actually con-

tained in it. Because every process on Android runs in a DalvikVM (cf. Section

2.2), this DalvikVM is a logical target as an entry point for a forensic investi-

gation. The source code of Dalvik is publicly available, either as a standalone

project1 or as part of the Android Open Source Project. The latter is a more

suitable choice, because for a specific Android version, the corresponding source

code can be downloaded and investigated.

DvmGlobals

Case (2011) showed that a suitable entry point for extracting information out

of a DalvikVM would be the object DvmGlobals. It is a structure available to

every single DalvikVM instance and contains global data shared and used by

application processes. An excerpt of its structure declaration can be seen in

listing 5.1. The file it is declared in is dalvik/vm/Globals.h in the Android

source tree2.

DvmGlobals contains a lot of meta information for a specific DalvikVM instance.

One that is required for this research project is a field called loadedClasses. It

1http://code.google.com/p/dalvik/
2http://developer.android.com

http://code.google.com/p/dalvik/
http://developer.android.com
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Listing 5.1: struct DvmGlobals

struct DvmGlobals {
char* bootClassPathStr;
char* classPathStr;

size_t heapStartingSize;
size_t heapMaximumSize;
size_t heapGrowthLimit;
size_t stackSize;

/* [...] */

/*
* Loaded classes, hashed by class name. Each entry is a

* ClassObject*, allocated in GC space.

*/
HashTable* loadedClasses;

/* [...] */

/* field offsets - String */
int offJavaLangString_value;
int offJavaLangString_count;
int offJavaLangString_offset;
int offJavaLangString_hashCode;

/* [...] */
}

is a pointer to a hash table containing all loaded classes known to this instance

(cf. system classes). These classes contain meta information about their layout,

size, and members which can later be used to access specific class instance data.

To summarize, a single DalvikVM instance belonging to one specific process

contains the following information of interest:

1. A list of all loaded system classes.

2. Specific information about a single class, such as member fields, static vari-

ables, and method names.

Extracting this information together with creating a set of Volatility plugins for

this purpose is the goal in the following parts of this chapter.
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5.1.3. Parsing the Dalvik Virtual Machine

The Dalvik Virtual Machine is written in C++. As a consequence and for the

further analysis, it is important to know that it uses simple C structures as

its basic method to store internal data. Those simple structures have the big

advantage of being laid out in memory in a nearly one to one relationship. The

only thing to keep attention to is the structure alignment (Wikipedia, 2012e).

Fortunately, if Volatility is aware of the correct structure definitions, it already

provides proper means for accessing the encapsulated data objects (cf. Section

2.3).

The first challenge is to locate a concrete DvmGlobals instance in an existing

memory dump taken from an Android device (cf. Chapter 3). For all we know,

each process runs in its own DalvikVM, so each process has a corresponding

DvmGlobals object mapped somewhere into its memory region. The DalvikVM

is implemented as a shared library called libdvm, and it is dynamically loaded into

every application process. Still, this information is quite vague, so to isolate the

exact position, we look at the way it is defined in /dalvik/vm/Init.cpp within

the source tree of Android (Case, 2011):

struct DvmGlobals gDvm;

Because gDvm is defined as an uninitialized variable, it will get placed into the BSS

section (Wikipedia, 2012c) by the compiler, which in turn is inside the data sec-

tion of where libdvm is mapped. Together with the output of the linux proc maps

plugin, this information will be used in Section 5.2.4 for implementing the cor-

responding Volatility plugin. Once the DvmGlobal instance has been found in

memory, it should be possible to access the member field called loadedClasses

(cf. Listing 5.1). loadedClasses is a pointer to a hash table containing all the

preinitialized system classes known to the process it belongs to. The hash table

declaration can be seen in Listing 5.2.

The first noteworthy field is the tableSize. It is a simple integer and later

used as delimiter to iterate over the whole table looking for valid entries until

numEntries could be found. The next is pEntries, a pointer of type HashEntry

(cf. Listing 5.3) pointing to an array allocated on the process heap. This array

contains the actual entries, the loaded classes (ClassObjects). Each single entry
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Listing 5.2: struct HashTable

struct HashTable {
int tableSize; /* must be power of 2 */
int numEntries; /* current #of "live" entries */
int numDeadEntries; /* current #of tombstone entries */
HashEntry* pEntries; /* array on heap */
HashFreeFunc freeFunc;
pthread_mutex_t lock;

};

Listing 5.3: struct HashEntry

struct HashEntry {
u4 hashValue;
void* data;

};

holds a hashValue and an actual data pointer which is able to point to arbitrary

data (declared as void).

5.1.4. Supplement: Java Reflection

Before continuing into the details of how the DalvikVM implementation deals

with Java objects, there needs to be some explanation of how Java implements

its reflection3 capabilities. Reflection provides the means of accessing meta data

about an actual object, such as method names, instance fields, or static fields

which can be queried at runtime. In Java, all objects but primitive types are

implemented as references. Each reference type is derived from the java.lang

.Object, which, for instance, provides the basic method getClass() used to

query the actual class type at runtime (Oracle Corporation, 2012). In Java,

every object belongs to a certain class object. This class object is also referred

to as a system class throughout this document (cf. Section 2.2). A ClassObject

inside the DalvikVM implementation is used to implement arbitrary class objects,

and thus, its reflection features. Those are implemented in java.lang.Object,

every object is derived from. Each object in the DalvikVM has a reference to the

ClassObject it belongs to. It can also be considered as defining its type.

3http://en.wikipedia.org/wiki/Reflection_(computer_programming)

http://en.wikipedia.org/wiki/Reflection_(computer_programming)
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However, to store the actual meta data such as members and type information,

the underlying virtual machine has to implement this in a certain way. How this

is done for the DalvikVM is the subject of the following section.

5.1.5. The ClassObject

A ClassObject represents a single class and is declared in dalvik/vm/oo/Object

.h in the Android source code tree. It contains information such as method and

member names, the size of the object in memory, and its super class, just to name

a few. It is used by the DalvikVM to implement arbitrary class objects used at

the higher Java level and implements its reflection capabilities (cf. Section 5.1.4).

It is the central point of interest when it comes to gather information about class

objects and their concrete instances in memory at a later point in time. Listing

5.4 shows an excerpt of the data structure containing the most interesting items

for forensic investigation performed in this project.

Listing 5.4: struct ClassObject

struct ClassObject {
Object obj;
const char* descriptor;
DvmDex* pDvmDex;
size_t objectSize;
ClassObject* super;
int interfaceCount;
ClassObject** interfaces;
int directMethodCount;
Method* directMethods;
int virtualMethodCount;
Method* virtualMethods;
int ifieldCount;
int ifieldRefCount;
InstField* ifields;
const char* sourceFile;
int sfieldCount;
StaticField sfields[];

};
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The Class Descriptor (const char* descriptor)

The first important field in a ClassObject is the field named descriptor. It is a

constant string containing the field descriptor of the referenced class (Lindholm

et al., 2012).

The first character of the descriptor string defines the type of object. A “L”

stands for a object reference, a “[“ for an array. Multiple “[“ characters specify

the array dimension. Other characters specify primitive types. Table 5.1 lists all

the possibilities.

Type Character Interpretation
B byte signed byte
C char Unicode character code point, encoded with UTF-16
D double double-precision floating-point value
F float single-precision floating-point value
I int integer
J long long integer
Lclass; reference an instance of a class named class
S short signed short
Z boolean true or false
[ reference one array dimension

Table 5.1.: Java Type Specifiers

(Lindholm et al., 2012)

For instance, these are examples of possible descriptors:

(1) Ljava/lang/String; (3) I
(2) [Ljava/lang/Object; (4) Z

(1) depicts a reference to a java.lang.String object. (2) is an one dimensional

array of references to java.lang.Object objects. (3) and (4) show primitive

types, an integer and a boolean.

Every member of a class has a specific type, so the information contained in the

descriptor will become valuable when there is the need to find and parse a specific

object or primitive in physical memory.
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Fields

There are two kinds of fields a class can have, instance, and static fields. Static

fields are read and initialized from the underlying Dex-file and shared amongst

all class instances using them. This way, they have only to be initialized and

made available once. The ClassObject’s member field sfieldCount contains

the number of those static fields. Due to the fact that those can be discovered

by other means than live memory forensics, they will not receive any further

attention in this thesis.

Listing 5.5: struct Field

struct Field {

ClassObject* clazz;

const char* name;

const char* signature;

u4 accessFlags;

};

Listing 5.6: struct InstField

struct InstField {

Field field;

int byteOffset;

};

On the other hand, instance fields are bound to every single object instance.

Their number can be read from ifieldCount, while ifields points to an array

of InstField objects which are shown in Figure 5.6. Those objects have a pointer

clazz as their first member, specifying the class the instance field was declared

in. The member name is the variable or reference name, and the signature

defines the type of the variable (cf. Table 5.1). accessFlags provides the access

specifiers used for the higher level Java language such as private, protected or

public.

The variable ifieldRefCount in ClassObject contains the number of object ref-

erences, so it is always smaller or equal than ifieldCount. In the DalvikVM

implementation at hand, the instance fields are sorted in a way that references

always come first, followed by the primitive types, if there are any.

Methods

Next to fields, there are both direct and virtual methods. Both array pointers

(directMethods and virtualMethods) point to Method structures seen in Listing
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5.7. directMethodCount and virtualMethodCount depict the number of meth-

ods, respectively.

Listing 5.7: struct Method

struct Method {
ClassObject* clazz;
const char* name;
const char* shorty;

};

Inside the Method structure, there are three fields of interest. Again, the first

clazz pointer points to a ClassObject the method is declared in. The name

is just the name of the method while shorty specifies the signature in a short

form similar to the descriptors seen in Table 5.1. The first character specifies the

return value followed by the function arguments. For instance, a shorty string

of “ZLI” specifies a method returning a boolean and taking an object reference

and an integer as their two arguments.

Other Fields of Interest

There are more fields of interest in a ClassObject, though. pDvmDex points to

the underlying Dex-file (cf. Section 2.2). objectSize holds the byte size of the

whole object in memory. The super pointer holds a reference to the super class or

NULL if there is none. The super pointer is needed when enumerating instance

fields, because each ClassObject only holds the ones it defines directly. To also

get those of the parent classes, the super classes need to be traversed.

sourceFile contains a string naming the underlying source file the corresponding

class is implemented in. interfaceCount contains the number of interfaces this

specific class implements directly, while interfaces holds the corresponding ar-

ray. Most of the described fields will be used when creating the Volatility plugins

in Section 5.2.

5.1.6. DalvikVM Implementation of Java Objects

The DalvikVM is the virtual machine running the Android Java applications

(Lindholm et al., 2012). For this to accomplish, it needs to map the higher level
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Java classes into data objects written in C++. The DalvikVM operates on two

kinds of types, primitive types like integers or characters, and reference types

representing Java objects. Looking at the DalvikVM implementation, each Java

object is either a data, string, or an array object. The corresponding declarations

can be seen in Figure 5.8, 5.9, 5.10 and 5.11. A structure Object always has a

pointer clazz as its first field, representing the corresponding system class the

object belongs to. The following unsigned integer lock is used for synchronization

purposes. StringObject and DataObject are basically the same, except that the

former has additional access methods that are not of further relevance in the scope

of this thesis. The contained field instanceData holds a pointer (a reference), to

the actual instance class object or primitive type implemented.

For instance, a Java java.lang.Array object will be mapped to a DataObject,

and the instanceData pointer will in turn point to an ArrayObject (Yan & Yin,

2012).

The structure layouts are quite important because they can be exploited to draw

conclusions about how the objects are laid out in memory. After all, they are

simple C/C++ structures. For instance, when looking at the ArrayObject, the

clazz pointer would be at offset 0 from the beginning of the structure, length

at offset 8 and contents at offset 12. This information is later used when creating

the structure definitions for Volatility in Section 5.2.1.

Listing 5.8: struct Object

struct Object {

ClassObject* clazz;

u4 lock;

};

Listing 5.9: struct DataObject

struct DataObject {

Object obj;

u4 instanceData[1];

};

Listing 5.10: struct StringObject

struct StringObject {

Object obj;

u4 instanceData[1];

};

Listing 5.11: struct ArrayObject

struct ArrayObject {

Object obj;

u4 length;

u8 contents[1];

};
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Although each Java object will be mapped to a Data-/String- or ArrayObject,

there is even a smaller entity for storing data, a JValue.

The JValue

The JValue structure is the smallest unit for storing data in a DalvikVM. It is

defined in the Android source tree in dalvik/vm/Common.h and can be seen in

Listing 5.12.

Listing 5.12: struct JValue

union JValue {
u1 z;
s1 b;
u2 c;
s2 s;
s4 i;
s8 j;
float f;
double d;
Object* l;

};

A JValue implements the JValue object pattern (Riehle, 2006) and combines

both primitive types and object references into a single data object, namely a C

union. It is the smallest object type a DalvikVM is aware of when implementing

the higher level Java objects. Every value which is supposed to be read from

physical memory is represented by a JValue.

5.2. Volatility Plugins for the Dalvik Virtual Machine

After outlining both the basics of the Volatility framework together with the con-

cepts and implementation details of the DalvikVM, the next step is to transform

that knowledge into source code. The following prerequisites discussed earlier

should be already met:

1. Availability of one or more memory dumps from a phone running Android

(cf. Section 3).
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2. A working Volatility tree with support for Android (cf. Section 2.3).

3. A working Volatility profile consisting of a System.map and a module.dwarf

debug file (cf. Section 4.1.1). Both files need to match the kernel which

was running at the time the memory dump was acquired.

In the following sections, we will describe the development process of specific

Volatility plugins for analyzing the Dalvik Virtual Machine. For that purpose,

we outline the general layout of Volatility plugins to fit the underlying framework,

show how to parse Java structures in memory, and introduce some of the created

helper functions.

All plugins that are created use a common file name prefix dalvik *. For instance,

plugins might be called dalvik find gdvm offset or dalvik class information, de-

pending on their functionality. In this chapter, we only show excerpts of relevant

source code. The full source code can be found on the accompanying CD.

5.2.1. VType Definitions

vtypes are a concept in Volatility which describe the structures and their layouts

used in an operating system. This includes their sizes, types, members, and their

corresponding offsets. For instance, in Listing 5.13, the vtype definition of the

HashTable structure is depicted that was previously described in Listing 5.2.

Listing 5.13: Volatility VType Definiton

1 ’HashTable’ : [ 0x18, {
2 ’tableSize’ : [ 0x0, [’int’]],
3 ’numEntries’ : [ 0x4, [’int’]],
4 ’numDeadEntries’ : [ 0x8, [’int’]],
5 ’pEntries’ : [ 0xc, [’pointer’, [’HashEntry’]]],
6 ’freeFunc’ : [ 0x10, [’address’]],
7 ’lock’ : [ 0x14, [’int’]],
8 }],

The first line defines the name of the structure and its overall byte size, 0x18

(hexadecimal) or 24 (decimal) in this case. This is the whole space the structure

will occupy in the physical memory image. Within Lines 2 to 7, the member fields

are defined. The first element in each of those lines is the name, followed by a
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colon separating it from the type size and definition. For instance, tableSize

is at offset 0x0, numEntries at offset 0x4, 4 bytes further. Line 5 contains a

member named pEntries, specifying a pointer to a HashEntry structure which

can be found at offset 0xc.

The most convenient method for creating these definitions would be by some

automatic means. One example for that are the System.map and the DWARF

module in the Volatility profile (cf. Section 4.1.1). It contains the basic data

structure definitions for the Linux operating system and is used in the plugins

shown in Section 4. No manual vtype creation is required there. However, all

the structures contained in the DalvikVM need proper vtype definitions, too.

These have been created manually, and the full list can be found in appendix

A.2. It lists the file called dalvik_vtypes.py which needs to be placed in the di-

rectory volatility/plugins/overlays/linux/ inside the Volatility source code

tree. In addition to providing the plain vtype structure definitions, it also con-

tains some helper functions which can be attached to single objects. For instance,

the HashTable structure is extended by a method called get_entries() which

is a generator function parsing and returning the single entries contained in the

pEntries pointer. How those functions and the vtype definitions are used will

be shown next.

Usage within Volatility

As soon as the vtype definitions are created, they can be used within the Volatil-

ity source code. For illustration purposes, an example reading and parsing a

HashTable object is provided in the Python code example in Listing 5.14.

Listing 5.14: Usage of VType Definitions in Volatility

1 gDvm = obj.Object(’DvmGlobals’, offset = 0x7123)

2 print gDvm.loadedClasses.numEntries

3 for entry in gDvm.loadedClasses.dereference().get_entries():

4 clazz = obj.Object(’ClassObject’, offset = entry)

It uses several objects and combines some of the previously discussed concepts.

As shown in Line 1, a DvmGlobals object found at an arbitrary offset is created

and stored in a variable named gDvm. The second line accesses the loadedClasses



5. Android DalvikVM Analysis 49

(a HashTable) member field in gDvm and prints the numEntries integer member

field. The third line iterates over the list of entries found in the HashTable. To

do so, it dereferences the loadedClasses pointer within gDvm and then uses the

get_entries() helper function to “generate” the individual entries. Due to the

fact that the above hash table contains ClassObject entries (cf. Section 5.1.3),

in the forth line, a Volatility object representing these class objects is created.

Each object can be found at offset entry, which is the loop element.

5.2.2. Parsing Java Structures in Memory

Every Java object, i.e. a java.lang.String or a java.util.ArrayList, needs a

separate implementation inside the DalvikVM. This leads to different represen-

tations in physical memory. When trying to extract data from memory images,

these objects need to be reverse engineered in order to get their data. This will be

frequently required when creating the applications specific plugins in Chapter 6.

For this purpose, some helper functions have been created and are provided by a

file called dalvik.py residing in volatility/plugins/linux/. One of the most

frequently used functions will be parseJavaLangString(stringObj) and thus,

we briefly describe its implementation to illustrate the underlying concepts. All

the helper functions together with their full source code listing can be found on

the accompanying CD.

parseJavaLangString(stringObj)

A Dalvik object representing a Java java.lang.String object has the following

object members:

Field Name Signature
value [C

hashCode I

offset I

count I

Table 5.2.: Member Fields of the DalvikVM’s String Implementation

Although the Java Language Specification (Gosling et al., 2005) does not explic-

itly define the Java string implementation, it is typically implemented with the
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concept of a head and a body (Kawachiya et al., 2008). A graphical representa-

tion can be seen in Figure 5.1. The head is the DalvikVM StringObject while

the body is the character array named value seen in the above table. The value

is the unicode representation of the implemented string, and thus, has a length of

two bytes for each character (The Unicode Consortium, 2011). In the DalvikVM,

it is implemented as an ArrayObject. The offset specifies the location of the

first character in the character array while the length defines the string length.

Figure 5.1.: Typical String Implementation in Java-based Virtual Machines

(Kawachiya et al., 2008)

The depicted string layout needs to be parsed from inside Python code which

can be seen in Listing 5.15. From Line 5 to 12, the member fields count, offset

and value are parsed. The value array is created in Line 14 while in Line 15, all

parsed members are put together to create the final string.
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Listing 5.15: Parsing a Dalvik String

1 def parseStringObject(so):
2 as = so.obj_vm
3 c = so.clazz
4

5 count_offset = so.byte_offset + c.getIFieldByName(’count’).
byteOffset

6 count = obj.Object(’int’, offset = count_offset, vm = as)
7

8 offset_offset = so.byte_offset + c.getIFieldByName(’offset’).
byteOffset

9 offset = obj.Object(’int’, offset = offset_offset, vm = as)
10

11 value_offset = so.byte_offset + c.getIFieldByName(’value’).
byteOffset

12 value = obj.Object(’address’, offset = value_offset, vm = as)
13

14 arr = value.dereference_as(’ArrayObject’)
15 string = obj.Object(’String’, offset = (arr.contents1.

obj_offset+offset*2), vm = as, length = count*2)
16

17 return string

5.2.3. Miscellaneous Helper Functions

There are a couple of other helper functions provided in the file dalvik.py. The

ones considered most important are briefly described in the following table.
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Function name Description
parseJavaUtilArrayList(x) Given an ArrayObject, it parses the referenced

java.util.ArrayList and returns the entries
with a generator function.

parseJavaUtilList(x) Given an address pointing to a
java.util.List, it extracts the underlying
ArrayObject and hands the result over to
parseJavaUtilArrayList().

parseArrayObject(x) Checks if the given object is an ArrayObject

and returns its elements as addresses.
getString(x) Given an arbitrary object, it assumes that it is

pointer to a string, creates a Volatility string
object and returns it.

isDvmGlobals(x) Given an arbitrary object, it checks if it is likely
to be a DvmGlobals object and returns either
true or false.

register_option_*(x) When those functions are called by a plugin,
they register a new command line parameter
with the Volatility framework.

get_data_section_*(x) Returns the address space start and end map-
pings for the data section of an arbitrary
mapped element such as a dynamic library (cf.
libdvm.so).

printChildren(x) Takes a graphical layout object, printing its
mChildren members. Can help parsing An-
droid applications.

Table 5.3.: Volatility Plugin Helper Functions

5.2.4. Plugin: dalvik find gdvm offset

The first plugin discussed is called dalvik find gdvm offset. Like the name might

suggest, its purpose is to locate the offset of the DvmGlobals objects within the

data section of where libdvm.so is mapped into the process address spaces. As

stated in Section 5.1.3, this is the base for any further DalvikVM analysis and

serves as a base for the other plugins. The relevant code snippet is shown in

Listing 5.16 and discussed in the following.

After initializing the basic variables, the helper function

get_data_section_libdvm() (cf. Section 5.2.2) is used to iterate over all

memory mappings of the given process (Line 6). It solely returns the memory
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Listing 5.16: Plugin dalvik find gdvm offset

1 class dalvik_find_gdvm_offset(linux_common.AbstractLinuxCommand):
2 def calculate(self):
3 offset = 0x0
4 mytask = None
5

6 for task, vma in dalvik.get_data_section_libdvm(self._config):
7 if not self._config.PID:
8 if task.comm+"" != "zygote":
9 continue

10 mytask = task
11 break
12

13 proc_as = mytask.get_process_address_space()
14

15 gDvm = None
16 offset = vma.vm_start
17 while offset < vma.vm_end:
18 offset += 1
19 gDvm = obj.Object(’DvmGlobals’, vm = proc_as, offset =

offset)
20 if dalvik.isDvmGlobals(gDvm):
21 yield (offset - vma.vm_start)

mappings of the data section of libdvm.so. If no specific process PID has been

specified on the command line, the first process we can be sure of running in a

DalvikVM will be used. It is called zygote (Line 8, cf. Section 2.2). Starting

from that position, the plugin scans and checks what is likely to be a DvmGlobals

object (Lines 17 to 22). If found, it passes the found offset to the output function

in Line 22. The output might look like in Listing 5.17.

Listing 5.17: Example dalvik find gdvm offset Output

$ ./vol.py [...] dalvik_find_gdvm_offset

DvmGlobals offset
-----------------
0x7c78

The found offset (0x7c78) is the offset from the start of the data section of the

corresponding process and can now be passed to the other plugins.
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5.2.5. Plugin: dalvik vms

The purpose of the dalvik vms plugin is to find all DalvikVM instances and to

print required information contained in it. We assume that the DvmGlobals

offset has been given on the command line. If that would not be the case, the

dalvik find gdvm offset plugin (cf. Section 5.2.4) could be used internally.

Listing 5.18: Plugin dalvik vms

1 class dalvik_vms(linux_common.AbstractLinuxCommand):
2 def calculate(self):
3 offset = 0x0
4

5 gDvmOffset = int(self._config.GDVM_OFFSET, 16)
6

7 for task, vma in dalvik.get_data_section_libdvm(self._config):
8 gDvm = obj.Object(’DvmGlobals’, offset = vma.vm_start +

gDvmOffset, vm = task.get_process_address_space())
9

10 # sanity check: Is this a valid DvmGlobals object?
11 if not dalvik.isDvmGlobals(gDvm):
12 continue
13 yield task, gDvm

The corresponding plugin code in Listing 5.18 saves the gDvm offset given on

the command line in Line 5. It then walks the process mapping of libdvm.so,

checking if a DvmGlobals object can be instantiated (Line 8 ff). If successful, it

passes the task and the object to the output function which prints the structure

members of gDvm. Those can be easily accessed due to the vtypes (cf. Section

5.2.1) being already available. An exemplary output can be seen in Listing 5.19.

It lists information about three DalvikVMs, together with their process IDs, and

names they belong to. It also contains information about the number of preloaded

classes. The next plugin will be used to list these, together with more detailed

information.

5.2.6. Plugin: dalvik loaded classes

The dalvik loaded classes plugin lists all preloaded classes from a specific DalvikVM

instance together with additional information. The most important bit is the
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Listing 5.19: Example dalvik vms Output

$ ./vol.py [...] dalvik_vms -o HEX

PID name heapStartingSize heapMaximumSize
----- --------------- ---------------- ---------------
2508 zygote 5242880 134217728
2612 system_server 5242880 134217728
2717 ndroid.systemui 5242880 134217728

stackSize tableSize numDeadEntries numEntries
---------- ---------- --------------- ---------------

16384 4096 0 2507
16384 8192 0 4123
16384 8192 0 2787

class offset, which can later be used to list specific class information with the

dalvik class information plugin discussed in Section 5.2.7.

Listing 5.20: Plugin dalvik loaded classes

1 class dalvik_loaded_classes(linux_common.AbstractLinuxCommand):
2 proc_maps = linux_proc_maps.linux_proc_maps(self._config).

calculate()
3 dalvikVMs = dalvik_vms.dalvik_vms(self._config).calculate()
4

5 for task, gDvm in dalvikVMs:
6 for entry in gDvm.loadedClasses.dereference().get_entries():
7 clazz = obj.Object(’ClassObject’, offset = entry, vm = gDvm

.loadedClasses.obj_vm)
8 yield task, clazz

In the first line of Listing 5.20, the plugin code uses the linux proc maps plugin

(cf. Section 4.2.5) to get the correct process mappings for an arbitrary PID

which has been specified on the command line. In the second line, the dalvik vms

plugin discussed before (cf. Section 5.2.5) is utilized to get a list of DalvikVM

instances corresponding to the given process ID. The code then walks those tasks

and DalvikVMs (Line 3), to get the concrete list of loaded classes (Line 6). For

each of those classes, it constructs a ClassObject and passes it to the output

function. The result might look like seen in Listing 5.21.

In addition to the Java descriptor (cf. Section 5.1.5) and source file the class

was implemented in, the important information needed for further analysis is the
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Listing 5.21: Example dalvik loaded classes Output

$ ./vol.py [...] dalvik_vloaded_classes -o HEX -p PID
PID Offset Descriptor sourceFile
---- ---------- -------------------------------- ----------------
4614 0x40c378b8 Ljava/lang/Long; Long.java
4614 0x40deb6d0 Ljava/io/Writer; Writer.java
4614 0x414e2f60 Lde/homac/Mirrored/ArticlesList; ArticlesList.jav

offset. It is the virtual address of the system class within its process address

space and is required to list specific information about that single class. This is

accomplished with the following plugin.

5.2.7. Plugin: dalvik class information

dalvik class information lists concrete information about a specific system class,

such as the number of instance fields, the object size in memory, or method names.

It is required to parse instance objects because it contains the byte offsets of each

instance field and thus, the location in the physical memory image. If the plugin

is supplied with a derived class object, it can also list instance fields of arbitrary

super classes.

A shortened example output can be seen in Listing 5.22. It is the output for a

Ljava/lang/Long; class at virtual address 0x40c378b8. The address has been

taken from the output of the plugin discussed in the previous Section 5.2.6. It

has one instance field named value, whose value can be found at offset 8 from

the beginning of an instance object from the same kind of system class. Besides

an init() method, it has methods (direct and virtual) we suspect from a class

representing a long integer, such as toString(), compare() or equals().

To get this information, the plugin code in Listing 5.23 first reads the class offset

given on the command line (Line 4). In the following lines, the address space for

a PID given on the command line is stored into the variable proc_as. Starting

form Line 12, it is used to instantiate a ClassObject which is then passed to

the output function in Line 13. The output function is not shown at this point,

because it just accesses and prints the structure members of the ClassObject.
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Listing 5.22: Example dalvik class information Output

$ ./vol.py [...] dalvik_class_information -o HEX -p PID \
-c 0x40c378b8

objectSize directMethodCount virtualMethodCount
---------- ----------------- ------------------

16 0 11

ifieldCount ifieldRefCount sfieldCount
----------- -------------- -----------

1 0 6

------- Instance fields ------
name signature accessFlags byteOffset
-------- ----------- ----------- ----------
value J 18 8

------- Direct Methods ------
name shorty
---------------------------------------- --------------------
<init> VJ
bitCount IJ
compare IJJ
toString LJ
[...]

------- Virtual Methods ------
name shorty
---------------------------------------- --------------------
equals ZL
hashCode I
intValue I
[...]

5.2.8. Plugin: dalvik find class instance

Until now, the plugins have just unveiled generic DalvikVM data and information

about system classes. What is still missing is the handling of real forensic live

data. Live data are objects applications read and write while running and not

just static class information. So what is really needed is the location (the address)

of instance objects inside the available memory dump. Together with the static

information from the corresponding system class, live data can be extracted.

For that purpose, a plugin called dalvik find class instance has been developed.

Its purpose is to scan a memory region where it is likely to find a certain class
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Listing 5.23: Plugin dalvik class information

1 class dalvik_class_information(linux_common.AbstractLinuxComman):
2 def calculate(self):
3

4 classOffset = int(self._config.CLASS_OFFSET, 16)
5

6 proc_as = None
7 tasks = linux_pslist.linux_pslist(self._config).calculate()
8 for task in tasks:
9 if task.pid == int(self._config.PID):

10 proc_as = task.get_process_address_space()
11

12 clazz = obj.Object(’ClassObject’, offset = classOffset, vm =
proc_as)

13 yield clazz

instance. Due to the fact that new class objects are typically instantiated on

the heap, looking for a an instance object inside the DalvikVM heap is just a

logical conclusion. The DalvikVM heap is mapped into each process address

space. The plugin code seen in Listing 5.24 locates the start and end addresses

of the corresponding data section from Line 8 to 12 by using the helper func-

tion dalvik get data section dalvik heap(). Afterwards, it starts scanning at the

beginning of the data section, trying to instantiate an Object (cf. Section 5.1.6).

This Object would contain a reference to the desired ClassObject. In turn, this

ClassObject’s clazz pointer would point to the actual system class, the one

given on the command line. So if the check in Line 18 succeeds, it is assumed

that the correct address has been found. It is then handed over to the output

function. This is done until the end of the Dalvik heap data section has been

reached. During the evaluation of various memory images and class objects, this

method of instance object retrieval was discovered as working reliably.

The first column in the output (cf. Listing 5.25) contains the system class for

which a corresponding instance object should be found. The second column lists

the class instances we are trying to locate. It also shows multiple rows containing

different pointers for the class instance. For three reasons, it is not enough to

stop looking after only one pointer has been found:

1. Not all objects in memory are still valid. The reference to the object might

still be intact, so that the clazz pointer check succeeds, however, other
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Listing 5.24: Plugin dalvik find class instance

1 class dalvik_find_class_instance(linux_common.
AbstractLinuxCommand):

2 def calculate(self):
3 classOffset = int(self._config.CLASS_OFFSET, 16)
4

5 start = 0
6 end = 0
7 proc_as = None
8 for task, vma in dalvik.get_data_section_dalvik_heap(self.

_config):
9 start = vma.vm_start

10 end = vma.vm_end
11 proc_as = task.get_process_address_space()
12 break
13

14 offset = start
15 while offset < end:
16 refObj = obj.Object(’Object’, offset = offset, vm = proc_as

)
17

18 if refObj.clazz.clazz == classOffset:
19 sysClass = refObj.clazz.clazz
20 yield sysClass, refObj.clazz

areas of the object’s memory might have been overwritten already. If no

Java code holds a reference to an object, the garbage collector is free to

do whatever it thinks is best, including reassignment of the corresponding

memory regions.

2. There might be multiple addresses (references) pointing to the same data

object.

3. There might be even a huge coincidence, although possible, that the clazz

pointer check succeeds although the corresponding memory area never

contained an object of the class looking for.

So to be sure that a specific address really contains the desired instance object,

the contained data needs to be always looked at and verified manually.
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Listing 5.25: Example dalvik find class instance Output

$ ./vol.py dalvik_class_information -p PID -c HEX

SystemClass InstanceClass
----------------------- -------------
0x414e2f60 0x414e3658
0x414e2f60 0x4156bec8
[...]

5.3. Summary and Outlook

In this chapter, we analyzed the DalvikVM implementation and its underlying

concepts. This lays the foundation for creating Volatility plugins to extract data

artifacts belonging to specific applications. With the help of these plugins, we will

be able to read class information and to gain knowledge about their corresponding

instance objects. This is mandatory for the next chapter, where we will perform

concrete application analysis together with the creation of the corresponding

Volatility plugins.



6. Android Application Analysis

The general concepts of Android and the DalvikVM have been depicted in the

previous chapters. This chapter will shift the view on a chosen set of Android

applications and will outline the process of concrete forensic investigations. For

this purpose, we show the general steps and entry points an forensic investigator

has available to perform an application analysis. This requires us to have a brief

look at the design of Android applications, especially in regard to the graphical

user interface and its underlying concepts like widgets and layouts. To make use

of that knowledge, we will show a way how to extract the widget information

out of APK-files. Furthermore, we illustrate the Android application memory

management to predict which application information can be extracted from a

memory image. With the help of Volatility, three widespread Android applica-

tions will be investigated. This includes a twofold approach, application analysis

and plugin creation.

6.1. Forensic Investigations of Android Applications

Chapter 5 showed what information and artifacts can be extracted from Dalvik

Virtual Machine instances. This is general information common to all DalvikVMs.

This made it possible to write universal Volatility plugins (cf. Section 5.2) which

can be used for every single process or system class. However, the goal of this

chapter is to extract higher level data from specific application processes such as

graphical elements.

The very first requirement is the location of the desired data structures in the

physical memory image. This requires deep knowledge about the data structures,

their interaction, and their locations. Ideally, we have to analyze an open source

application which source code is publicly available. For instance, this is done

when analyzing the K9-Mail application in Section 6.2.1. In this case, reading and

understanding the source code might directly lead to the class names containing

61
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the data we like to extract. It becomes more difficult when analyzing closed-

source application.

In an abstract way, the forensic process could be described as follows:

1. Get the process ID of the target application (cf. plugin linux pslist in

Section 4.2.2).

2. Find the name of the class which contains the desired data, either by

• looking at the source code, or

• guessing the name by looking at all class names of the DalvikVM in-

stance belonging to the process. This can be done with the help of the

dalvik loaded classes plugin shown in Section 5.2.6. When in doubt,

having a look at the class members with the dalvik class information

plugin (cf. Section 5.2.7) might give valuable hints, too. Further-

more, most applications, and the ones considered in this thesis, have a

graphical user interface. Everything that is visually presented to the

user needs to have corresponding structures containing the data. The

Android developer documentation states that element names in XML

quite often correspond to class names in Java code (Google Inc., 2012).

This relationship can be exploited to draw conclusions about the data

organization within an application. For this purpose, a brief overview

about Android layouts will be given in Section 6.1.1.

3. Get the virtual offset of the chosen system class by looking at the

dalvik loaded classes plugin output (cf. Section 5.21).

4. Locate a concrete class instance of chosen system class with the

dalvik find class instance (cf. Section 5.2.8) plugin.

5. Traverse the class instance’s data structures to acquire the desired

information. This step is best performed with the help of an additional

application specific Volatility plugin. This is the topic of this chapter.

6. Print the desired memory artifacts.

Steps 2 and 5 might require to traverse the graphical layout structure of the

application. So a short overview about Android screen and layout building is

given next.
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6.1.1. Android Layouts

Android activities embed graphical elements such as text views, buttons or scrol-

lable lists. In many cases, these graphical elements contain data which is of

forensic interest, so understanding their structure is of importance for the appli-

cation analysis.

The graphical elements are usually organized in different kinds of layouts, aligning

their elements in a certain way, i.e. horizontally or vertically. Creating those

layouts can be a twofold process: ”Android allows you to create a screen layout

in either Java code, or by declaring the layout in an XML file” (Morris, 2011).

For all applications looked at in this thesis, the latter applies. The XML files are

contained in the APKs (cf. Section 2.2) and describe the whole layout structure

of the referred application. Section 6.1.2 describes the process of gathering those

APKs from the target device and extracting their layout information.

First, we will have a look at the components Android has available for visual data

alignment. There are four types of group layouts (Google Inc., 2012):

• LinearLayout: A layout organizing its elements either horizontally, or ver-

tically.

• RelativeLayout: A layout organizing its elements in relative position to

each other.

• ListView: Provides a scrollable list view of items.

• GridView: Provides a two-dimensional, scrollable grid view of items.

The layouts can be nested, creating a hierarchical structure. An example for this

can be seen in Listing 6.1.

It describes a LinearLayout, containing a text view, a button and a

RealtiveLayout, all aligned vertically. Each element has a unique attribute

id, defining an identifier for layout referencing and access in Java code. The

RelativeLayout starting in Line 6 is a nested layout containing an edit box and

a button. The position of the button inside the RelativeLayout (Lines 8 and 9)

is defined by the attribute android:layout_below.

From a Java perspective, all the layout element classes are derived from a com-

mon class android.view.ViewGroup. It defines two inherited members, mParent
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Listing 6.1: Example Layout Definition (XML)

1 <?xml version="1.0" encoding="utf-8"?>
2 <LinearLayout xmlns:android="http://schemas.android.com/[...]"
3 android:orientation="vertical">
4 <TextView android:id="@+id/text" />
5 <Button android:id="@+id/button1" />
6 <RelativeLayout android:orientation="vertical">
7 <EditText android:id="@+id/name" />
8 <Button android:id="@+id/button2"
9 android:layout_below="@id/name" />

10 </RelativeLayout>
11 </LinearLayout>

and mChildren. The former is a single layout entity representing the parent,

while the latter is an array possibly containing multiple child elements. For in-

stance, in Listing 6.1, the outer LinearLayout has three children while the inner

RelativeLayout has only one parent and two children. Those member fields

will be frequently used when parsing layout structures to access forensic data

contained within.

6.1.2. From APK to XML

To make use of the layout definitions, they need to be available. As stated above,

they are contained within the APK-files of the corresponding applications. In An-

droid 4.0.3, system applications are located in the directory /system/app, while

non-system applications can be found in /data/app. They can be transferred to

a computer system with adb (cf. Section 3.2.1).

However, during application compilation, the XML layout files are transformed

into a binary format called axml (Haseman, 2008). After extraction of the APK-

file, tools like apktool1 or axml2xml2 are available to transform the XML files back

into a human-readable format.

1http://code.google.com/p/android-apktool/
2http://code.google.com/p/android-random/downloads/detail?name=
axml2xml.pl

http://code.google.com/p/android-apktool/
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
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6.1.3. Android Application Memory Management

The goal in Chapter 6 is to extract data from a memory dump which belongs

to a running, or even formerly running application. Whether the data can be

extracted and is valid heavily depends on the state of the corresponding memory

areas. Memory belonging to data visually presented to a user usually is unaltered

and valid. However, restricting forensic investigations to this kind of data would

mean that an available memory dump can only be used for specific artifacts. The

typical usage of a mobile device usually differs, though. The user opens multiple

applications and views, switches back and forth between them, and moves them

to the background or foreground. That basically means that data written into

certain application memory areas is not necessarily lost when the corresponding

applications or views are hidden. For data extraction, it is enough that the cor-

responding memory areas remain unaltered, whether the visual presentation was

available at the time the dump was captured is only of secondary relevance. For

that reason, the basics of Android data visualization together with the underlying

memory management has to be taken into account when evaluating the possibly

available artifacts in a memory dump.

The fundamental component of a graphical user interface belonging to an An-

droid application is an Activities. ”An Activity is an application component that

provides a screen with which users can interact in order to do something, [...]”

(Google Inc., 2012). Quite often, an activity corresponds to a single view and

capability. Typically multiple activities belong to a single application and can be

started and stopped independently from each other. There are other application

components such as Services, Content Providers, and Broadcast Receivers. While

the basic concepts still apply, those do not having a graphical representation and

are of minor relevance to this research project.

The life cycle of an Android activity or another application component can be

separated into three states (Google Inc., 2012). The states are an important

factor when the system, and thus the Low Memory Killer (cf. Section 2.2) has

to decide whether or not a process, and thus the application, needs to be killed

in times of memory shortage. The states are:

• Resumed: A state where the application is visible, active and can receive

user input. In this state, the application’s underlying process is never killed
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due to memory shortage.

• Paused: The corresponding application is still active, but not directly visi-

ble. This is the state an application transfers to, when another application

is started overlapping the old one. Applications in this state are only killed

by the Low Memory Killer in extremely low memory situations.

• Stopped: The application is in the background, not visible to the user and

not active. However, ”the Activity object is retained in memory, it main-

tains all state and member information, but is not attached to the window

manager” (Google Inc., 2012). In case of memory shortage, the memory

belonging to the activity will be freed.

Memory areas belonging to an application are basically only freed, and thus,

assigned to another application and possibly overwritten, when they are in state

Stopped. But even then, and quite unlikely when analyzing a system with a decent

amount of main memory, there is a huge possibility that even data from already

killed applications is completely valid and still available in the memory dump.

We discover this to be true when extracting contact information in Section 6.2.3.

Memory areas of applications in state Resumed are always unaltered, while it is

very likely for those in state Paused.

Summarizing, memory dumps certainly contain the data belonging to activities

which were visible at the time of acquisition. But it is still very likely to contain

valid data for other activities belonging to the same application and still possible

for those running in background or even already killed, to a certain extend, at

least.

6.2. Applications

In the further course of this chapter, we perform exemplary forensic investi-

gations, together with depicting the corresponding Volatility plugins, for data

contained in three Android applications. Those are K-9 Mail3, a powerful mail

reader, WhatsApp4, a text messaging application, and the standard contacts ap-

plication shipped with Android.

3http://code.google.com/p/k9mail/
4http://www.whatsapp.com/

http://code.google.com/p/k9mail/
http://www.whatsapp.com/
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All plugins that are created use the common file name prefix dalvik app *. Fur-

thermore, if there are more than one plugin for an application, an additional

specifier defines its concrete task. For instance, application plugins might be

called dalvik app k9mail accounts or dalvik app k9mail mail. The first is the ap-

plication plugin for the K-9 Mail application reading its account data, while the

purpose of the latter is to read just a single mail. To illustrate the plugin writing,

we only show relevant source code snippets. The full source code can be found

on the accompanying CD.

6.2.1. K-9 Mail

The first application we look at is K-9 Mail. K-9 Mail is a popular open source

email client able to handle multiple IMAP mail accounts, has a folder view, a mail

view, and of course, email composing capabilities (K-9 Mail Project, 2012). Each

of those features have a corresponding activity view displaying the respective

data. The application version the analysis is based on is 4.200. We will extract

mail accounts together with their credentials, a list of received mails and show

how to read their content.

Parsing Mail Accounts

(dalvik app k9mail accounts)

Figure 6.1.: K-9 Mail Email
Accounts

The activity shown in Figure 6.1 shows a typical

view for the K-9 Mail application configured with

multiple mail accounts. At first glance, two ele-

ments are of forensic interest: The account’s name

and corresponding email address. However, we will

see that there is more data attached to an account,

such as default folder names, the storage method,

the mail access method (IMAP, POP, etc.), and

even the user name and password. Extracting this

information is the goal.

The first step (cf. Section 6.1) is to find the process ID of K-9 Mail with the

linux pslist plugin. After locating the DalvikVM’s global structure offset with
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dalvik find gdvm offset, it can be supplied to the dalvik loaded classes plugin.

Amongst all loaded system classes, there is one with a descriptor Lcom/fsck/k9/

activity/Accounts;, implemented in a file called Accounts.java. According to

this information, it is likely that it contains references to the individual accounts.

Looking at its members with the dalvik class information plugin strengthens this

suspicion: It has a member field called accounts which is an array of Lcom/fsck

/k9/BaseAccount; objects. In turn, each Lcom/fsck/k9/BaseAccount; object

contains members like mInboxFolderName or mDescription, specifying the de-

fault folder name for the inbox and and an account description. It also has a

member named mStoreUri which contains the credentials and access method for

the corresponding account. This includes the user name and password which are

stored as plain text.

The whole hierarchy for accessing the desired information can be seen in Listing

6.2. The level of indentation describes the relationship between class objects and

their member fields. The elements in brackets describe the type of member field

in the same line. Bold elements are the elements we finally extract.

Listing 6.2: Access Hierarchy for K-9 Mail Account Information

Lcom/fsck/k9/activity/Accounts;
-> [Lcom/fsck/k9/BaseAccount;

-> Lcom/fsck/k9/BaseAccount;
-> mInboxFolderName (Ljava/lang/String;)
-> mDescription (Ljava/lang/String;)
-> [...]

-> Lcom/fsck/k9/BaseAccount;
-> mInboxFolderName (Ljava/lang/String;)
-> [...]

The next step is to find an instance object with the dalvik find class instance

plugin. This object’s offset can then be passed to the newly created

dalvik app k9mail accounts plugin. Parts of its source code can be seen in Listing

6.3. In Line 4, a ClassObject is created from the given instance object offset.

The helper function getIFieldAsArray() is used to iterate over all BaseAccount

objects starting from Line 6. The following lines just access the member fields,

passing their names together with their contents to the output function.

An exemplary output can be seen in Listing 6.4. It also shows the mStoreUri
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Listing 6.3: dalvik app k9mail accounts Plugin

1 class dalvik_app_k9mail_accounts(linux_common.[...]):
2 def calculate(self):
3

4 c = obj.Object(’ClassObject’, offset = classOffset, vm = a)
5

6 for ref in c.getIFieldAsArray("accounts"):
7 print "-------- Account: -------"
8

9 clazz = obj.Object(’ClassObject’, offset = ref, vm = a)
10

11 yield "mInboxFolderName", clazz.getIFieldAsString(
"mInboxFolderName")

12 yield "mStoreUri", clazz.getIFieldAsString("mStoreUri")
13 yield "mAccountNumber", clazz.getIFieldAsBool(

"mAccountNumber")

Listing 6.4: dalvik app k9mail accounts Plugin Output

$ ./vol.py [...] dalvik_app_k9mail_accounts -p PID -c HEX

member field value
----------------- ---------------------------------------------
-------- Account:
mInboxFolderName INBOX
mStoreUri imap+ssl://androidforensics:androidtester@imap.web.de
mDescription androidforensics@web.de
mAccountNumber 0

-------- Account:
mInboxFolderName INBOX
mStoreUri imap+ssl://androidtester:androidtester@imap.web.de
mDescription androidtester@web.de
mAccountNumber 1

member field which contains the account type (IMAP), the user name (android-

forensics) and the password (androidtester). Even the IMAP server address can

be extracted (imap.web.de).
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Listing Emails

dalvik app k9mail listmails

Another activity frequently used in K-9 Mail is a view to list all mails inside

a folder. Together with the sender, subject, and time, a short preview of the

message text is shown (cf. Figure 6.2).

Figure 6.2.: K9-Mail Email
List

The steps for a forensic application investigation

outlined along with the previous plugin and de-

picted in Section 6.1 also apply for this plugin.

However, from now on, they are considered self-

evident and will not be described again.

Looking at the dalvik loaded classes plugin unveils

that a class called MessageList corresponds to the

shown activity and marks the base element for fur-

ther investigation. Analyzing the source code and

layout XML file leads to an access hierarchy shown

in Listing 6.5.

Listing 6.5: Access Hierarchy for K-9 Mail List View

Lcom/fsck/k9/activity/MessageList;
-> mMessageListFragment (Lcom/fsck/k9/fragment/

MessageListFragment;)
-> mListView (Landroid/widget/ListView;)

-> mChildren[x] (Landroid/widget/RelativeLayout;)
-> mChildren[1] (Landroid.widget.TextView;)

-> mText (Ljava/lang/String; mail subject)
-> mChildren[4] (Landroid.widget.TextView;)

-> mText (Ljava/lang/String; mail time)
-> mChildren[2] (Landroid.text.SpannableString;)

-> mText (Landroid.text.SpannableString;)
-> mText (Ljava/lang/String; mail preview)

The MessageList has a member field of type MessageListFragment containing

a ListView with multiple graphical layouts. Each of them is embedding another

information like the mail subject or preview.

Data access inside the plugin code (cf. Listing 6.6) is straightforward. It shows

how to traverse the classes and iterates over all shown mail fragments, storing
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Listing 6.6: dalvik app k9mail listmails Plugin

1 class dalvik_app_k9mail_listmails(linux_common.[...]):
2 def calculate(self):
3 c = obj.Object(’ClassObject’, offset = classOffset, vm = as)
4

5 c = c.getIFieldAsClassObject("mMessageListFragment")
6 c = c.getIFieldAsClassObject("mListView")
7 c = c.getIFieldAsClassObject("mChildren")
8

9 for i in dalvik.parseArrayObject(c.obj_offset, as):
10 layout = obj.Object(’ClassObject’, offset = i, vm = as)
11

12 arrObj = layout.getIFieldAsArray("mChildren")
13

14 tv = obj.Object(’ClassObject’, offset = arrObj[1], vm = as)
15 subject = dalvik.getStringFromTextView(tv)

the mail subject in an equally named variable. Output of that plugin might look

like seen in Listing 6.7.

Listing 6.7: dalvik app k9mail listmails Plugin Output

$ ./vol.py [...] dalvik_app_k9mail_listmails -p PID -c HEX

time subject preview
------ ---------------------------- -------
1/1/2013 Android, the world’s most... Android powers hundred...
1/1/2013 The Volatility Framework The Volatility Framework...
1/1/2013 Forensic Science Forensic science (often...
1/1/2013 lime-forensics LiME (formerly DMD) is a...

The list view of mails could be helpful when deciding whether a specific mail

could be of forensic interest. If so, the following plugin can be used to reads its

whole content.
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Reading Mail

(dalvik app k9mail mail)

Figure 6.3.: K-9 Mail Mail Ac-
tivity

Reading single mails might also be valuable to a

forensic investigation. Of course, K-9 Mail pro-

vides a way for doing so. Clicking on a mail frag-

ment in the folder view opens the mail activity.

Besides sender and recipient(s), the mail body is

shown (cf. Figure 6.3). The corresponding An-

droid activity is called MessageView. It has mem-

bers named mMessage, mSubject, mFrom and mTo,

containing the corresponding data artifacts of in-

terest. Listing 6.8 shows the thorough access hier-

archy.

Listing 6.8: Access Hierarchy for K-9 Mail Mail View

Lcom/fsck/k9/activity/MessageView;
-> mMessage (Lcom/fsck/k9/mail/store/LocalStore$LocalMessage;)

-> mBody (Lcom/fsck/k9/mail/store/LocalStore$LocalTextBody)
-> mBody (Ljava/lang/String; mail body)

-> mSubject (Ljava/lang/String; mail subject)
-> mFrom ([Lcom/fsck/k9/mail/Address;)

-> Lcom/fsck/k9/mail/Address;
-> mAddress (Ljava/lang/String; sender address)
-> mPersonal (Ljava/lang/String; sender name)

-> [...]
-> mTo ([Lcom/fsck/k9/mail/Address;)

-> Lcom/fsck/k9/mail/Address;
-> mAddress (Ljava/lang/String; recipient address)

-> [...]

The Python source code has been written accord-

ingly and a shortened example is shown in Listing 6.9. In Lines 7 and 8, the mail

body text is extracted while in Lines 10 to 15, the sender names are read.

A typical output might look as seen in Listing 6.10.
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Listing 6.9: dalvik app k9mail mail Plugin

1 class dalvik_app_k9mail_mail(linux_common.AbstractLinuxCommand):
2 def calculate(self):
3 c = obj.Object(’ClassObject’, offset = classOffset, vm = as)
4 c = c.getIFieldAsClassObject("mMessageViewFragment")
5 c = c.getIFieldAsClassObject("mMessage")
6

7 mBody = c.getIFieldAsClassObject("mBody")
8 body = mBody.getIFieldAsString("mBody")
9

10 from_addr = [ ]
11 from_name = [ ]
12 for i in c.getIFieldAsArray("mFrom"):
13 clazz = obj.Object(’ClassObject’, offset = i, vm = as)
14 from_addr.append(clazz.getIFieldAsString("mAddress"))
15 from_name.append(clazz.getIFieldAsString("mPersonal"))

Listing 6.10: dalvik app k9mail mail Plugin Output

$ ./vol.py [...] dalvik_app_k9mail_mail -p PID -c HEX

subject from_name from_addr
------------- ------------ ---------------
The Volat...ramework John Doe androidfo...s@web.de

to_addr body
----------------------- --------------
androidtester@web.de The Volatility Framework is...research.

6.2.2. WhatsApp

WhatsApp is a real time messaging application available for various operating

systems like Apple iOS, Android and Symbian (WhatsApp Inc., 2012b). In ad-

dition to plain text messages, the application is also able to share media files like

images or videos. It is based on the standard contact list to find communication

counterparts. In August 2013, the company announced that they where able to

count over 10 million messages a day (WhatsApp Inc., 2012a), making it one of

the most popular in the mobile IT industry. The WhatsApp version used in this

thesis is 2.8.9108.

In the following, two Android activities for WhatsApp are considered.
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Parsing Conversations

(dalvik app whatsapp conversations)

The first forensic analysis is done for the conversations activity. It lists the most

recent or active communications. An example view is provided in Figure 6.4.

Figure 6.4.: WhatsApp Con-
versations

Each conversation has the sender’s name, an icon,

and shows the last text which was either sent or

received. Listing 6.12 shows the corresponding ac-

cess hierarchy. Starting from a Lcom/whatsapp/

Conversations; class object, several levels of lay-

outs need to be traversed in order to extract the

desired data. A ListView object contains several

rows organized in a LinearLayout, each representing a single conversation. The

object described as Lcom/whatsapp/TextEmojiLabel; is an application specific

class able to display conversation text together with special symbols like smileys.

The text part can be extracted by accessing the member field mText, which is a

Java string.

Listing 6.11: dalvik app whatsapp conversations Plugin Output

$ ./vol.py [...] dalvik_app_whatsapp_conversations -p PID -c HEX

Name Time
----------------------------------- --------
John Doe 12:25am

Listing 6.13 shows the corresponding plugin code. It has to reverse engineer the

layout elements in order to reach the underlying artifacts.

The output of the plugin might look as seen in Listing 6.11.
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Listing 6.12: Access Hierarchy for WhatsApp Conversations

Lcom/whatsapp/Conversations;
-> mList (Landroid/widget/ListView;)

-> mChildren[0] (Landroid/widget/RelativeLayout;)
-> mChildren[1] (Landroid/widget/LinearLayout;)

-> mChildren[0] (Landroid/widget/LinearLayout;)
-> mChildren[0] (Lcom/whatsapp/TextEmojiLabel;)

-> mText (Ljava/lang/String; name of conversation
counterpart)

-> mChildren[0] (Landroid/widget/LinearLayout;)
-> mChildren[1] (Landroid/widget/TextView;)

-> mText (Ljava/lang/String; time string)
-> mChildren[1] (Landroid/widget/LinearLayout;)

-> mChildren[1] (Lcom/whatsapp/TextEmojiLabel;)
-> mChildren[2] (Lcom/whatsapp/TextEmojiLabel;)

-> mText (Ljava/lang/String; preview string)
-> mChildren[x] (Landroid/widget/RelativeLayout;)
-> [...]

Listing 6.13: dalvik app whatsapp conversations Plugin

1 class dalvik_app_WhatsApp_conversations(linux_common.[...]):
2 def calculate(self):
3 c = obj.Object(’ClassObject’, offset = classOffset, vm = as)
4 mList = c.getIFieldAsClassObject("mList")
5

6 arrObj = mList.getIFieldAsArray("mChildren")
7 l = obj.Object(’ClassObject’, offset = arrObj[0], vm = as)
8 arrObj = l.getIFieldAsArray("mChildren")
9 l = obj.Object(’ClassObject’, offset = arrObj[1], vm = as)

10 arrObj = l.getIFieldAsArray("mChildren")
11 l = obj.Object(’ClassObject’, offset = arrObj[0], vm = as)
12

13 arrObj = l.getIFieldAsArray("mChildren")
14 tv = obj.Object(’ClassObject’, offset = arrObj[0], vm = as)
15 name = tv.getIFieldAsString("mText")
16

17 tv = obj.Object(’ClassObject’, offset = arrObj[1], vm = as)
18 time = tv.getIFieldAsString("mText")
19

20 yield name, time
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Reading a Conversation

(dalvik app whatsapp conversation)

While the previous plugin extracted data from multiple conversations, the one

handled in this section concentrates on the single conversations view like one is

shown in Figure 6.5.

Listing 6.14: Access Hierarchy for WhatsApp Conversation

Lcom/whatsapp/Conversation;
-> Kb (Landroid/widget/TextView;)

-> mText (Ljava/lang/String; Communication counterpart)
-> mList (Landroid/widget/ListView;)

-> mChildren[x] (Lcom/whatsapp/qf; conversation rows)
-> mChildren[1] (Landroid/widget/LinearLayout;)

# Either mChildren[1] _or_ mChildren[2] is valid
-> mChildren[1] (Landroid/widget/LinearLayout;)

-> mChildren[0] (Landroid/widget/RelativeLayout;)
-> mChildren[1] (Lcom/whatsapp/TextEmojiLabel;)

-> mText (Ljava/lang/String; Received message)
-> mChildren[2] (Landroid/widget/RelativeLayout;)

-> mChildren[1] (Lcom/whatsapp/TextEmojiLabel;)
-> mText (Ljava/lang/String; Sent message)

Figure 6.5.: WhatsApp Con-
versation

How to access the data elements can be seen

in Listing 6.14. Starting from a Lcom/whatsapp

/Conversation; class, we extract the communi-

cation counterpart in the member field Kb. A

ListView is the starting point of traversing the lay-

out structure. Finally, the received and sent mes-

sages ca be read.

The corresponding plugin code to extract the data

from within Volatility is shown in Listing 6.15. At

Lines 5 and 6, the code extracts the conversation

counterpart’s name which is stored in the variable

buddy. In the following lines, the layout elements

are parsed to extract the sent messages.

The result might look like in Listing 6.16.
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Listing 6.15: dalvik app whatsapp conversation Plugin

1 class dalvik_app_WhatsApp_conversation(linux_common.[...]):
2 def calculate(self):
3 c = obj.Object(’ClassObject’, offset = classOffset, vm = as)
4

5 tv = c.getIFieldAsClassObject("Kb")
6 buddy = tv.getIFieldAsString("mText")
7

8 mList = c.getIFieldAsClassObject("mList")
9 for row_ref in mList.getIFieldAsArray("mChildren"):

10 l = obj.Object(’ClassObject’, offset = arrObj[2], vm = as)
11

12 arrObj = l.getIFieldAsArray("mChildren")
13 tv = obj.Object(’ClassObject’, offset = arrObj[1], vm = as)
14

15 sent = tv.getIFieldAsString(’mText’)

Listing 6.16: dalvik app whatsapp conversation Plugin Output

$ ./vol.py [...] dalvik_app_whatsapp_conversation -p PID -c HEX

Conversation with John Doe:
sent received
------------------------------ ---------------------------------

Live Memory Forensics
On Android

With Volatility
including DalvikVM analysis

and application analysis

6.2.3. Contacts

(dalvik app contacts)

Most mobile device, and cell phones in particular, have a way for managing

contacts. In case of smartphones, it is used to store the contact’s phone numbers,

addresses, and additional meta information. This information could be of broad

interest for a forensic investigation.

On every smart phone, the dialer application is one of the most used function-

alities. The dialer view in Android Ice Cream Sandwich consists of three basic

parts: The dialer itself, a view showing the latest calls, and a contacts view.
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These parts correspond to the top icons which can be seen in Listing 6.6.

Figure 6.6.: Android Dialer

Whenever initiating or answering a call, the dialer

application is involved. To speed up GUI respon-

siveness, opening one of the functionalities causes

the application to preload the other views with

their appropriate data items. This makes it quite

likely that the contacts list from the dialer appli-

cation is available in the phone’s memory. Both

the dialer and the standalone contacts application

share the same data, although it is less likely that

the latter has been accessed previously to captur-

ing the memory image. So in the following plugin,

we concentrate on trying to extract the contacts

from the dialer application view.

The approach taken in the previous sections has

always been to find a class object representing a list of items, locating an instance

object of the same, and passing that to the corresponding plugin on the command

line. The plugin was responsible for traversing the list and extracting single items

out of it.

Now we make use of a different approach: During investigation of the preloaded

classes, it was not possible to identify a class corresponding to one list of

contacts. However, we were able to locate the class named Lcom/android/

contacts/list/ContactListItemView;, representing a single contact. The use

of dalvik find class instance unveiled multiple instance objects. Each each of them

can now be passed to the newly created plugin, retrieving the name, number and

type of the number of the contact. With this method, all of the available contacts

could be restored. On a related note, we were even able to recover contacts which

were previously deleted but still available in the application’s memory space.

Listing 6.17 shows how to access the data artifacts from a ContactListItemView

object, while Listing 6.18 shows how the data access works inside the plugin.

In Line 5 of the source code, the text view is parsed. In Line 6, we extract the

string from the SpannedString;, and in Line 7 we save the contact’s name in the

equally named variable. The data access for the phone number and the type of
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Listing 6.17: Access Hierarchy for Contacts

Lcom/android/contacts/list/ContactListItemView;
-> mNameTextView (Landroid/widget/TextView;)

-> mText (Landroid/text/SpannedString;)
-> mText (Ljava/lang/String; Contact Name)

-> mDataView (Landroid/widget/TextView;)
-> mText (Landroid/text/SpannedString;)

-> mText (Ljava/lang/String; Number)
-> mLabelView (Landroid/widget/TextView;)

-> mText (Landroid/text/SpannedString;)
-> mText (Ljava/lang/String; Number Type)

Listing 6.18: dalvik app contacts Plugin

1 class dalvik_app_contacts(linux_common.AbstractLinuxCommand):
2 def calculate(self):
3 c = obj.Object(’ClassObject’, offset = classOffset, vm = as)
4

5 tv = c.getIFieldAsClassObject("mNameTextView")
6 ss = tv.getIFieldAsClassObject("mText")
7 name = ss.getIFieldAsString("mText")

the phone number is analogous.

Together with the usage of dalvik find class instance, the output can be seen in

Listing 6.19.
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Listing 6.19: dalvik app contacts Plugin Output

$ ./vol.py [...] dalvik_find_class_instance -p PID -c HEX

SystemClass InstanceClass
------------------------------ ------------------------------
0x4177a820 0x417be9e0
0x4177a820 0x418fc748
0x4177a820 0x41862278
[...]

$ ./vol.py [...] dalvik_app_contacts -p PID -c 0x417be9e0
Name Number Number Type
-------------------- -------------------- -----------
Jane Doe 123456789 Mobile

$ ./vol.py [...] dalvik_app_contacts -p PID -c 0x418fc748
Name Number Number Type
-------------------- -------------------- -----------
Max Mustermann 5896/342 Home Fax

6.3. Summary and Outlook

In this chapter, we have finally shown how to perform real-world application anal-

ysis. We depicted the general process for a forensic investigation and practically

applied the knowledge gathered from the previous chapters. The illustration of

access hierarchies together with the actual source code can provide a valuable

guideline for additional application plugins.

In the last chapter, we will submit the created source code to the Volatility

project, look at possible subsequent research possibilities, and will conclude the

thesis.
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The last chapter will describe when and where the created source code was sub-

mitted to the Volatility project. After looking at possible future work, we will

summarize our insights, check if we have reached the thesis goals and will draw

a conclusion.

7.1. Source Code Submission

In the course of this thesis, we have made heavy use of the Volatility project.

Without the provided framework, the performed tasks for Android memory anal-

ysis would have been much more challenging. This was made possible because

the project uses an open development model.

To conform to the open source license used in Volatility, all the plugins are

released under GNU General Public License. Furthermore, a first iteration of

infrastructure support and plugins was sent to the Volatility development mailing

list on 16th October 20121. It received positive feedback.

Alongside with the plugins, a documentation file called README.dalvik was in-

cluded. It can be seen in appendix A.2. It can also assist to get a fast overview

about the plugins and how they interact.

A cleaned up set of plugins, including bug fixes, further enhancement and support

for specific applications was submitted to the same list on 6th January 20132. The

same version of plugins can be found on the accompanying CD.

1http://lists.volatilesystems.com/pipermail/vol-dev/2012-October/
000187.html

2http://lists.volatilesystems.com/pipermail/vol-dev/2013-January/
000198.html
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7.2. Future Work

This research project advanced the field of Android live memory forensics by out-

lining a thorough overview and by providing a software infrastructure to perform

real-world forensic investigations. However, starting from the outcome of this

thesis, of course there is still some work that could be followed up on.

To illustrate the dependencies and interaction between the different plugins, we

made heavy use of command line options. However, all the plugins have the

proper means of calling each other to interchange data. So an investigation

making use of multiple plugins, calling each other one after another, could be

simplified by creating one final plugin aggregating the different tasks.

Also, the plugins parsing the DalvikVM are dependent on one specific Android

and DalvikVM version. There is no guarantee that they will work with future

implementations. The Dalvik plugins and related files could be extended to deal

with different versions. Alternatively, different plugins targeting different versions

could be provided.

The same applies to the application plugins depicted in Chapter 6. They are

just meant to illustrate the development process. On top of the existing infras-

tructure, more plugins can be created, targeting various applications and specific

application versions. A huge set of application plugins could make their way into

the toolkit of any forensic investigator.

However, this thesis does not solve the problem of creating a kernel-agnostic

module that can be used on arbitrary devices. We still need modules fitting

the target kernels. With the vast variety of devices in the market, all running

different kernels and Android versions, this continues to be a challenge for further

research.

7.3. Conclusion

This thesis provides a thorough overview about the memory acquisition and mem-

ory analysis possibilities of the Android platform. It presents a software stack to

enable forensic investigators to perform application analysis with as little efforts



7. Future Work and Conclusion 83

as possible. Another goal is the submission of the created plugins into to the

Volatility project.

As a solution for memory acquisition already exists, it was possible to shift the

main focus to memory analysis. During the project planning, it became obvious

that a stacked approach would be best: The analysis of the Android kernel,

of the middleware layer (DalvikVM), and the graphical applications. While the

kernel analysis was intended to query memory mappings and to identify processes

belonging to specific DalvikVM instances, the information from the latter should

assist in the creation of the application plugins. The approach turned out to

be feasible. As soon as the infrastructure support in Volatility and the first

application investigations were finished, application analysis turned out to be a

straightforward process. Hence, this made it possible to develop a guideline for

the analysis of further applications.

The Volatility framework has been of indispensable assistance. Without it, a

lot of analysis work would have been much more challenging, if not impossible.

Actually, the open concept and source code availability of most involved projects

laid the foundation for drawing conclusions about the layout of data objects in

physical memory. This is the reason why the created software stack was submitted

to the Volatility project, to share the work and the gained knowledge with other

researchers or forensic investigators.

Together with the work performed in this project, Volatility is now able to provide

a thorough set of plugins for memory analysis of the Android platform. It can

assist real-world forensic investigations and the set of plugins suits well into the

toolkit of every digital forensic investigator.
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A. Appendix

A.1. Volatility vtype Definitions for the DalvikVM

Listing A.1: dalvik vtypes.py

# Volatility

#

# This program is free software; you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation; either version 2 of the License, or (at

# your option) any later version.

#

# This program is distributed in the hope that it will be useful, but

# WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

# General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with this program; if not, write to the Free Software

# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

"""

@author: Holger Macht

@license: GNU General Public License 2.0 or later

@contact: holger@homac.de

"""

import volatility.obj as obj

import volatility.plugins.linux.dalvik as dalvik

dalvik_vtypes = {

#dalvik/Common.h

’JValue’ : [ 0x4, {

’bool’ : [ 0x0, [’bool’]],

’int’ : [ 0x0, [’int’]],

’Object’ : [ 0x0, [’address’]],

}],

#dalvik/oo/Object.h

’Field’ : [ 0x10, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’name’ : [ 0x4, [’pointer’, [’char’]]],

’signature’ : [ 0x8, [’pointer’, [’char’]]],

’accessFlags’ : [ 0xc, [’unsigned int’]],

}],
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’InstField’ : [ 0x14, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’name’ : [ 0x4, [’pointer’, [’char’]]],

’signature’ : [ 0x8, [’pointer’, [’char’]]],

’accessFlags’ : [ 0xc, [’unsigned int’]],

’byteOffset’ : [ 0x10, [’int’]],

}],

’StaticField’ : [ 0x18, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’name’ : [ 0x4, [’pointer’, [’char’]]],

’signature’ : [ 0x8, [’pointer’, [’char’]]],

’accessFlags’ : [ 0xc, [’unsigned int’]],

# can take up to 8 bytes

’value’ : [ 0x10, [’JValue’]],

}],

’Object’ : [ 0x8, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’lock’ : [ 0x4, [’int’]],

}],

’DataObject’ : [ 0xc, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’lock’ : [ 0x4, [’int’]],

’instanceData’ : [ 0x8, [’address’]],

}],

’StringObject’ : [ 0xc, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’lock’ : [ 0x4, [’int’]],

’instanceData’ : [ 0x8, [’unsigned int’]],

}],

’ArrayObject’ : [ 0x14, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’lock’ : [ 0x4, [’int’]],

’length’ : [ 0x8, [’unsigned int’]],

#including padding of 4 bytes

’contents0’ : [ 0xc, [’address’]],

’contents1’ : [ 0x10, [’address’]],

}],

’Method’ : [ 0x38, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’name’ : [ 0x10, [’pointer’, [’char’]]],

’shorty’ : [ 0x1c, [’pointer’, [’char’]]],

’inProfile’ : [ 0x34, [’bool’]],

}],

#libdex/DexFile.h

’DexOptHeader’ : [ 0x4, {

’magic’ : [ 0x0, [’unsigned long long’]],

’dexOffset’ : [ 0x8, [’unsigned int’]],

}],

’DexHeader’ : [ 0x4, {

’fileSize’ : [ 0x10, [’unsigned int’]],

}],

’DexFile’ : [ 0x4, {

’pOptHeader’ : [ 0x0, [’pointer’, [’DexOptHeader’]]],

’pHeader’ : [ 0x4, [’pointer’, [’DexHeader’]]],
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}],

#dalvik/DvmDex.h

’DvmDex’ : [ 0x4, {

’pDexFile’ : [ 0x0, [’pointer’, [’DexFile’]]],

}],

#dalvik/oo/Object.h

’ClassObject’ : [ 0xa4, {

’clazz’ : [ 0x0, [’pointer’, [’ClassObject’]]],

’lock’ : [ 0x4, [’int’]],

’instanceData0’: [ 0x8, [’address’]],

’instanceData1’: [ 0xc, [’address’]],

’instanceData2’: [ 0x10, [’address’]],

’instanceData3’: [ 0x14, [’address’]],

’descriptor’ : [ 0x18, [’pointer’, [’char’]]],

’descriptorAlloc’ : [ 0x1c, [’pointer’, [’char’]]],

’accessFlags’ : [ 0x20, [’unsigned int’]],

’serialNumber’ : [ 0x24, [’unsigned int’]],

’pDvmDex’ : [ 0x28, [’pointer’, [’DvmDex’]]],

’status’ : [ 0x2c, [’int’]],

’verifyErrorClass’ : [ 0x30, [’address’]],

’initThreadId’ : [ 0x34, [’unsigned int’]],

’objectSize’ : [ 0x38, [’unsigned int’]],

’elementClass’ : [ 0x3c, [’pointer’, [’ClassObject’]]],

’arrayDim’ : [ 0x40, [’int’]],

’primitiveType’ : [ 0x44, [’int’]],

’super’ : [ 0x48, [’pointer’, [’ClassObject’]]],

’classLoader’ : [ 0x4c, [’pointer’, [’Object’]]],

’initiatingLoaderList’ : [ 0x50, [’int’]],

’interfaceCount’ : [ 0x58, [’int’]],

’interfaces’ : [ 0x5c, [’pointer’, [’pointer’, [’ClassObject’]]]],

’directMethodCount’ : [ 0x60, [’int’]],

’directMethods’ : [ 0x64, [’address’]],

’virtualMethodCount’ : [ 0x68, [’int’]],

’virtualMethods’ : [ 0x6c, [’pointer’, [’Method’]]],

’vtableCount’ : [ 0x70, [’int’]],

’vtable’ : [ 0x74, [’pointer’, [’pointer’, [’Method’]]]],

’iftableCount’ : [ 0x78, [’int’]],

’iftable’ : [ 0x7c, [’address’]],

’ifviPoolCount’ : [ 0x80, [’int’]],

’ifviPool’ : [ 0x84, [’int’]],

’ifieldCount’ : [ 0x88, [’int’]],

’ifieldRefCount’ : [ 0x8c, [’int’]],

’ifields’ : [ 0x90, [’pointer’, [’InstField’]]],

’refOffsets’ : [ 0x94, [’int’]],

’sourceFile’ : [ 0x98, [’pointer’, [’char’]]],

’sfieldCount’ : [ 0x9c, [’int’]],

’sfields’ : [ 0xa0, [’pointer’, [’StaticField’]]],

}],

#dalvik/Hash.h

’HashEntry’ : [ 0x8, {

’hashValue’ : [ 0x0, [’unsigned int’]],

’data’ : [ 0x4, [’pointer’, [’void’]]],

}],

’HashTable’ : [ 0x18, {
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’tableSize’ : [ 0x0, [’int’]],

’numEntries’ : [ 0x4, [’int’]],

’numDeadEntries’ : [ 0x8, [’int’]],

’pEntries’ : [ 0xc, [’pointer’, [’HashEntry’]]],

’freeFunc’ : [ 0x10, [’address’]],

’lock’ : [ 0x14, [’int’]],

}],

#dalvik/Globals.h

’DvmGlobals’ : [ 0x1c, {

’bootClassPathStr’ : [ 0x0, [’pointer’, [’char’]]],

’classPathStr’ : [ 0x4, [’pointer’, [’char’]]],

’heapStartingSize’ : [ 0x8, [’unsigned int’]],

’heapMaximumSize’ : [ 0xc, [’unsigned int’]],

’heapGrowthLimit’ : [ 0x10, [’unsigned int’]],

’stackSize’ : [ 0x14, [’unsigned int’]],

’verboseGc’ : [ 0x18, [’bool’]],

’verboseJni’ : [ 0x19, [’bool’]],

’verboseClass’ : [ 0x1a, [’bool’]],

’verboseShutdown’ : [ 0x1b, [’bool’]],

’jdwpAllowed’ : [ 0x1c, [’bool’]],

’jdwpConfigured’ : [ 0x1d, [’bool’]],

’jdwpTransport’ : [ 0x20, [’int’]],

’jdwpServer’ : [ 0x24, [’bool’]],

’jdwpHost’ : [ 0x28, [’pointer’, [’char’]]],

’jdwpPort’ : [ 0x2c, [’int’]],

’jdwpSupend’ : [ 0x30, [’bool’]],

’profilerClockSource’ : [ 0x34, [’int’]],

’lockProfThreshold’ : [ 0x38, [’unsigned int’]],

’vfprintfHook’ : [ 0x3c, [’address’]],

’exitHook’ : [ 0x40, [’address’]],

’abortHook’ : [ 0x44, [’address’]],

’isSensitiveThreadHook’ : [ 0x48, [’address’]],

’jniGrefLimit’ : [ 0x4c, [’int’]],

’jniTrace’ : [ 0x50, [’pointer’, [’char’]]],

’reduceSignals’ : [ 0x54, [’bool’]],

’noQuitHandler’ : [ 0x55, [’bool’]],

’verifyDexChecksum’ : [ 0x56, [’bool’]],

’stackTraceFile’ : [ 0x58, [’pointer’, [’char’]]],

’logStdio’ : [ 0x5c, [’bool’]],

’dexOptMode’ : [ 0x60, [’int’]],

’classVerifyMode’ : [ 0x64, [’int’]],

’generateRegisterMaps’ : [ 0x68, [’bool’]],

’registerMapMode’ : [ 0x6c, [’int’]],

’monitorVerification’ : [ 0x70, [’bool’]],

’dexOptForSmp’ : [ 0x71, [’bool’]],

’preciseGc’ : [ 0x72, [’bool’]],

’preVerify’ : [ 0x73, [’bool’]],

’postVerify’ : [ 0x41, [’bool’]],

’concurrentMarkSweep’ : [ 0x75, [’bool’]],

’verifyCardTable’ : [ 0x76, [’bool’]],

’disableExplicitGc’ : [ 0x77, [’bool’]],

’assertionCtrlCount’ : [ 0x78, [’int’]],

’assertionCtrl’ : [ 0x7c, [’address’]],

’executionMode’ : [ 0x80, [’int’]],
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’initializing’ : [ 0x84, [’bool’]],

’optimizing’ : [ 0x85, [’bool’]],

’properties’ : [ 0x88, [’address’]],

’bootClassPath’ : [ 0x8c, [’address’]],

’bootClassPathOptExtra’ : [ 0x90, [’address’]],

’optimizingBootstrapClass’ : [ 0x94, [’bool’]],

’loadedClasses’ : [ 0x98, [’pointer’, [’HashTable’]]],

’classSerialNumber’ : [ 0x9c, [’int’]],

’initiatingLoaderList’ : [ 0xa0, [’address’]],

’internLock’ : [ 0xa4, [’int’]],

’internedStrings’ : [ 0xa8, [’address’]],

’literalStrings’ : [ 0xac, [’address’]],

’classJavaLangClass’ : [ 0xb0, [’address’]],

’offJavaLangRefReference_referent’ : [ 0x1c8, [’int’]],

’offJavaLangString_value’: [ 0x214, [’int’]],

’offJavaLangString_count’: [ 0x218, [’int’]],

’offJavaLangString_offset’: [ 0x21c, [’int’]],

’offJavaLangString_hashCode’: [ 0x220, [’int’]],

’gcHeap’ : [ 0x290, [’address’]],

#TODO: missing objects, but this should be enough for now

}],

}

class HashTable(obj.CType):

"""A class extending the Dalvik hash table type"""

def get_entries(self):

offset = 0x0

count = 0

while offset < self.tableSize * 0x8:

hashEntry = obj.Object(’HashEntry’, offset = self.pEntries + offset, vm = self.

obj_vm)

# 0xcbcacccd is HASH_TOMBSTONE for dead entries

if hashEntry.hashValue == 0 or hashEntry.data == 0xcbcacccd:

offset += 0x8

count += 1

continue

yield hashEntry.data

# each HashTable entry is 8 bytes (hash* + data*) on the heap

offset += 0x8

count += 1

class ClassObject(obj.CType):

"""A class extending the Dalvik ClassObject type"""

def getIFields(self):

clazz = self

# is this an instance object? If so, get the actual system class

while dalvik.getString(clazz.clazz.descriptor)+"" != "Ljava/lang/Class;":

clazz = clazz.clazz

while clazz:

i = 0

while i < clazz.ifieldCount:



A. Appendix 93

yield obj.Object(’InstField’, offset = clazz.ifields+i*0x14, vm = clazz.obj_vm)

i+=1

clazz = clazz.super

def getIField(self, nr):

count = 0

for field in self.getIFields():

if count == nr:

return field

count += 1

def getIFieldByName(self, name):

for field in self.getIFields():

if dalvik.getString(field.name)+"" == name:

return field

return None

def getIFieldAsString(self, name):

ifield = self.getIFieldByName(name)

jvalue = obj.Object(’JValue’, offset = self.obj_offset + ifield.byteOffset, vm = self.

obj_vm)

if jvalue.Object == 0:

return "NULL"

return dalvik.parseJavaLangString(jvalue.Object, self.obj_vm)

def getIFieldAsBool(self, name):

ifield = self.getIFieldByName(name)

jvalue = obj.Object(’JValue’, offset = self.obj_offset + ifield.byteOffset, vm = self.

obj_vm)

return jvalue.bool

def getIFieldAsInt(self, name):

ifield = self.getIFieldByName(name)

jvalue = obj.Object(’JValue’, offset = self.obj_offset + ifield.byteOffset, vm = self.

obj_vm)

return jvalue.int

def getIFieldAsClassObject(self, name):

ifield = self.getIFieldByName(name)

jvalue = obj.Object(’JValue’, offset = self.obj_offset + ifield.byteOffset, vm = self.

obj_vm)

return obj.Object(’ClassObject’, offset = jvalue.Object, vm = self.obj_vm)

def getIFieldAsObject(self, name):

ifield = self.getIFieldByName(name)

jvalue = obj.Object(’JValue’, offset = self.obj_offset + ifield.byteOffset, vm = self.

obj_vm)

return obj.Object(’Object’, offset = jvalue.Object, vm = self.obj_vm)
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def getIFieldAsArray(self, name):

ifield = self.getIFieldByName(name)

jvalue = obj.Object(’JValue’, offset = self.obj_offset + ifield.byteOffset, vm = self.

obj_vm)

array = [ ]

for o in dalvik.parseArray(jvalue.Object, self.obj_vm):

# not all array fields have a value

if o == 0:

continue

array.append(o)

return array

def getDirectMethods(self):

i = 0

while i < self.directMethodCount:

method = obj.Object(’Method’, offset = self.directMethods+i*0x38, vm = self.obj_vm)

yield method

i+=1

def getVirtualMethods(self):

i = 0

while i < self.virtualMethodCount:

method = obj.Object(’Method’, offset = self.virtualMethods+i*0x38, vm = self.obj_vm)

yield method

i+=1

class DalvikObjectClasses(obj.ProfileModification):

conditions = {’os’: lambda x: x == ’linux’}

before = [’LinuxObjectClasses’]

def modification(self, profile):

profile.vtypes.update(dalvik_vtypes)

profile.object_classes.update({’HashTable’: HashTable,

’ClassObject’: ClassObject})

A.2. Plugin Documentation README.dalvik

Listing A.2: README.dalvik

Dalvik Support for Volatility

=============================

The following plugins are provided:

- dalvik_find_gdvm_offset

- dalvik_vms

- dalvik_loaded_classes

- dalvik_class_information
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- dalvik_find_class_instance

- dalvik_app_k9mail_accounts

- dalvik_app_k9mail_listmails

- dalvik_app_k9mail_mail

- dalvik_app_whatsapp_conversations

- dalvik_app_whatsapp_conversation

- dalvik_app_contacts

- dalvik_app_mirrored

All plugins are actually linux plugins, so they need a valid profile and

lime [1] memory dump.

The plugins have been successfully tested on two Android devices running

Ice Cream Sandwich (ICS): Huawei Honor (U8860) and Samsung Galaxy S2

(I9100).

The Volatility 2.3-devel branch, or any later version, is needed.

Especially revision r2659 has been verified to work properly with these

plugins.

Detailed plugin description:

============================

dalvik_find_gdvm_offset

----------------------

The global struct DvmGlobals (gDvm) [2] is the foundation for all

provided plugins. To locate it in an actual memory dump, we need to know

where the data section (in which gDvm is mapped) of libdvm is mapped

within a specific process. This information can be taken from the

proc_maps plugin. For example (for zygote):

0x408f9000-0x409aa000 r-x 0 259: 1 915 2508 /system/lib/libdvm.so

0x409aa000-0x409b2000 rw- 724992 259: 1 915 2508 /system/lib/libdvm.so

So the data section starts at 0x409aa000. Within this range, gDvm can be

found. The dalvik_find_gdvm_offset scans this address space and tries to

locate gDvm and finally prints its offset. This offset can be given to

all further plugins via the ’-o’ switch in order to prevent rescanning,

which saves quite some time.

Optional argument: -p PID, --pid=PID

Specify the PID of one process you know of to run in a DalvikVM. For

instance, zygote. Speeds up offset calculation.

dalvik_vms

----------

Lists all Dalvik Virtual Maschines found in the memory dump and some

additional information such as heapStartingSize, number of loaded

classes, etc.. Limit to specific VMs with the ’-p PID’ switch.
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Optional argument: -o GDVM_OFFSET (in hex)

Specify the gDvm offset to speed up calculations. See the

dalvik_find_gdvm_offset plugin for more information

Optional argument: -p PID, --pid=PID

Limit to specific VMs which correspond to the given PID.

dalvik_loaded_classes

---------------------

List all loadedClasses from a specific DalvikVM instance together with

some information. Most important is the ’Offset’ column, which can be

used for listing specific class information with the

dalvik_class_information plugin.

Optional argument: -o GDVM_OFFSET (in hex)

Specify the gDvm offset to speed up calculations. See the

dalvik_find_gdvm_offset plugin for more information

Optional argument: -p PID, --pid=PID

Limit to specific VM which correspond to the given PID.

dalvik_class_information

------------------------

List concrete information about a specific system class, such as number

of instance fields or method names.

Mandatory argument: -c CLASS_OFFSET, --class_offset=CLASS_OFFSET

Offset of a class object within its process address space. Usually

taken from the dalvik_loaded_classes plugin.

Mandatory argument: -p PID, --pid=PID

This needs to match the process in which the class object of interest

is defined. Specifically, this is the PID printed on the same row as

the CLASS_OFFSET argument from the dalvik_loaded_classes plugin.

Optional argument: -o GDVM_OFFSET (in hex)

Specify the gDvm offset to speed up calculations. See the

dalvik_find_gdvm_offset plugin for more information

dalvik_app_*
------------

Concrete instance objects (in contrast to preloaded system classes) are

allocated in the dalvik-heap of each process. So in order to analyze

specific applications together with there instance data, we need a

concrete instance object pointer. This pointer can be aquired manually,

for instance via hprof heap dumps (cf. Eclipse MAT) or via methods of

scanning. For the latter, the dalvik_find_class_instance (see below) is

provided. It takes a pointer to a system class (got via the
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dalvik_loaded_classes plugin) and scans te dalvik heap for possibly

matching instance objects. The aquired pointer can then be passed to the

corresponding app plugins. Please note: The dalvik_find_class_instance

plugin might require quite some time (>5m) to find an appropriate

pointer.

Example plugin for reading app information: dalvik_app_mirrored

Given an instance object (’-c’), it lists the current active article

titles shown by the application called ’Mirrored’, a news reader. Of

course, this requires an appropriate memory dump.

Mandatory argument: -c CLASS_OFFSET, --class_offset=CLASS_OFFSET

Offset of a concrete class instance object. The

dalvik_find_class_instance plugin can help to find one.

Mandatory argument: -p PID, --pid=PID

This needs to match the process in which the class object of interest

is defined.

dalvik_find_class_instance

--------------------------

Takes a process ID and a system class offset and tries to locate

instance objects of the system class within the processes address space.

Mandatory argument: -c CLASS_OFFSET, --class_offset=CLASS_OFFSET

Offset of a class object within its process address space. Usually

taken from the dalvik_loaded_classes plugin.

Mandatory argument: -p PID, --pid=PID

This needs to match the process in which the class object of interest

is defined. Specifically, this is the PID printed on the same row as

the CLASS_OFFSET argument from the dalvik_loaded_classes plugin.

Helper modules:

===============

dalvik.py

---------

Helper functions for parsing DalvikVM objects such as java/lang/String

or array lists.

dalvik_vtypes.py (volatility/plugins/overlays/linux/)

-----------------------------------------------------

Data structure definitions and extending helper functions.

Explanatory Volatility session
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==============================

[...] = --profile=Linux<insert your profile here>x86 -f <insert lime memory dump here>

$ ./vol.py [...] dalvik_find_gdvm_offset

DvmGlobals offset

-----------------

0x7c58

$ ./vol.py [...] linux_pslist | grep Mirrored

0xe0684960 .homac.Mirrored 1547 10066 Tue, 04 Sep 2012 18:24:44 +0000

$ ./vol.py [...] dalvik_loaded_classes -o 0x7c58 -p 1547 | grep ’ArticlesList;’

PID Offset Descriptor sourceFile

----- ---------- --------------------------------- -----------------

1547 0x415059d0 Lde/homac/Mirrored/ArticlesList; ArticlesList.java

$ ./vol.py [...] dalvik_find_class_instance -p 1547 -c 0x415059d0

SystemClass Instance

-------------------------------------------------- -----------------

0x415059d0 0x415060c8

[...]

$ ./vol.py [...] dalvik_app_mirrored -p 1547 -c 0x415060c8

Nr Title

--- --------------------------------------------------

1 Paralympics-Teilnehmerin Wyludda: Zweite Karriere nach Olympia-Gold

2 Antarktis: Tourismus nicht Schuld an Pinguin-Schwund

3 Installation in Rio: Guck mal, wer da traeumt

[...]

[1] http://code.google.com/p/lime-forensics/

[2] cf. dalvik/vm/Globals.h in ICS’s source tree
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